GRIN-toolbox: A versatile and light toolbox for NMR inversion

工具箱 计算机科学 数据处理 反演(地质) 计算科学 生物 构造盆地 操作系统 古生物学 程序设计语言
作者
Bo Chen,L. H. Wu,Y. Chen,Zhenghan Fang,Yuqing Huang,Yu Yang,Enping Lin,Zhong Chen
出处
期刊:Journal of Magnetic Resonance [Elsevier BV]
卷期号:355: 107553-107553 被引量:1
标识
DOI:10.1016/j.jmr.2023.107553
摘要

NMR technique serves as a powerful analytical tool with diverse applications in fields such as chemistry, biology, and material science. However, the effectiveness of NMR heavily relies on data post-processing which is often modeled as regularized inverse problem. Recently, we proposed the Generally Regularized INversion (GRIN) algorithm and demonstrated its effectiveness in NMR data processing. GRIN has been integrated as a friendly graphic user interface-based toolbox which was not detailed in the original paper. In this paper, to make GRIN more practically accessible to NMR practitioners, we focus on introducing the usage of GRIN-Toolbox with processing examples and the corresponding processing graphic interfaces, and the user manual is attached as Supplementary Material. GRIN-Toolbox is versatile and lightweight, where various kinds of data processing tasks can be completed with one click, including but not limited to diffusion-ordered spectroscopy processing, magnetic resonance imaging under-sampling reconstruction, Laplace (diffusion or relaxation) NMR inversion, spectrum denoising, etc. In addition, GRIN-Toolbox could be extended to more applications with user-designed inversion models and freely available at https://github.com/EricLin1993/GRIN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
步履完成签到 ,获得积分10
刚刚
2秒前
Yuan完成签到 ,获得积分10
4秒前
小小完成签到,获得积分20
4秒前
4秒前
5秒前
快乐枫叶完成签到 ,获得积分10
5秒前
6秒前
天天快乐应助ann采纳,获得10
7秒前
guozizi发布了新的文献求助10
7秒前
情怀应助优雅冰海采纳,获得10
8秒前
爱学习的小李完成签到 ,获得积分10
8秒前
9秒前
温柔的惜儿应助豪杰采纳,获得10
9秒前
9秒前
yanm完成签到,获得积分10
10秒前
昏睡的蟠桃应助追寻茗采纳,获得30
10秒前
是欧小米完成签到,获得积分10
11秒前
11秒前
12秒前
GAO发布了新的文献求助10
12秒前
xW发布了新的文献求助10
14秒前
墨尘发布了新的文献求助10
14秒前
华仔应助鳄鱼采纳,获得10
18秒前
1459发布了新的文献求助10
18秒前
娇气的翠绿应助mumu采纳,获得30
19秒前
lll关闭了lll文献求助
19秒前
21秒前
爆米花应助科研顺利采纳,获得10
22秒前
时老完成签到,获得积分10
22秒前
23秒前
传奇3应助Crazy_Runner采纳,获得10
23秒前
23秒前
万事胜意完成签到,获得积分10
24秒前
25秒前
传奇3应助xW采纳,获得10
25秒前
cyp发布了新的文献求助10
26秒前
研友_VZG7GZ应助墨尘采纳,获得30
26秒前
scl完成签到,获得积分10
27秒前
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836627
求助须知:如何正确求助?哪些是违规求助? 3378913
关于积分的说明 10506658
捐赠科研通 3098652
什么是DOI,文献DOI怎么找? 1706589
邀请新用户注册赠送积分活动 821108
科研通“疑难数据库(出版商)”最低求助积分说明 772431