Unlocking the Origins of Highly Reversible Lithium Storage and Stable Cycling in a Spinel High‐Entropy Oxide Anode for Lithium‐Ion Batteries

材料科学 阳极 尖晶石 电解质 电化学 化学工程 锂(药物) 电极 氧化物 储能 纳米技术 冶金 热力学 化学 物理化学 工程类 内分泌学 功率(物理) 物理 医学
作者
Shisheng Hou,Lin Su,Shuai Wang,Yujie Cui,Junzhang Cao,Huihua Min,Jingze Bao,Yanbin Shen,Qichong Zhang,Zhefei Sun,Chongyang Zhu,Jing Chen,Qiaobao Zhang,Feng Xu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (4) 被引量:47
标识
DOI:10.1002/adfm.202307923
摘要

Abstract Developing high‐capacity conversion‐type anodes with superior durability substituting conventional graphite anodes is urgently desired to improve the energy density of lithium‐ion batteries (LIBs). However, fatal capacity decay during cycling of the conversion‐type anodes, which is primarily due to their inevitable structural degradation and continuous solid‐electrolyte interphase reformation induced by drastic volume change, has highly restricted their commercialization. And, the interrelated effects of phase transformation, structural evolution, and electrochemical characteristics of the conversion‐type anodes during cycling remain poorly understood. Herein, the findings on the fabrication and understanding of a previously unexplored entropy‐stabilized spinel oxide, (Co 0.2 Mn 0.2 V 0.2 Fe 0.2 Zn 0.2 ) 3 O 4 as a promising conversion anode for LIBs, exhibiting not only moderate volume change character but also highly reversible capacities of ≈900 mAh g −1 for 500 cycles at 0.2 A g −1 and ≈500 mAh g −1 for 2000 cycles at 3 A g −1 , respectively, are reported. Evidenced by in situ transmission electron microscopy coupled with theoretical calculations, its underlying mechanism underpinning highly reversible Li storage is explicitly revealed, which originates from reversible phase transformation and domain reconstruction during cycling. Moreover, the origin of small volume change is also clearly clarified. This work provides renewed mechanistic insights into designing high‐capacity and durable conversion‐type electrode materials for high‐performance LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻舟空渡完成签到,获得积分10
刚刚
阿帅发布了新的文献求助10
刚刚
手心的蔷薇0130应助yjq采纳,获得20
刚刚
sen发布了新的文献求助10
1秒前
打打应助猪猪hero采纳,获得10
1秒前
科研小小小白完成签到,获得积分10
1秒前
bbanshan完成签到,获得积分10
2秒前
2秒前
CipherSage应助dara997采纳,获得10
2秒前
zqgxiangbiye发布了新的文献求助10
2秒前
早期早睡完成签到,获得积分10
3秒前
领导范儿应助小月月采纳,获得10
3秒前
xx发布了新的文献求助10
4秒前
FashionBoy应助jackeylee99999采纳,获得10
4秒前
4秒前
小手冰凉发布了新的文献求助10
5秒前
5秒前
酷波er应助我要吃鱼采纳,获得10
6秒前
田博文发布了新的文献求助10
6秒前
7秒前
7秒前
阿卡丽完成签到,获得积分10
8秒前
干净秋寒完成签到,获得积分20
8秒前
smile完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
cxl完成签到 ,获得积分10
9秒前
大方思柔发布了新的文献求助10
10秒前
10秒前
11秒前
干净秋寒发布了新的文献求助10
11秒前
OVO发布了新的文献求助10
11秒前
情怀应助左诗采纳,获得30
12秒前
Jasper应助阿卡丽采纳,获得10
12秒前
本草石之寒温完成签到 ,获得积分10
12秒前
田博文发布了新的文献求助10
12秒前
小手冰凉完成签到,获得积分10
12秒前
mlty00完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555941
求助须知:如何正确求助?哪些是违规求助? 4640654
关于积分的说明 14662224
捐赠科研通 4582603
什么是DOI,文献DOI怎么找? 2513503
邀请新用户注册赠送积分活动 1488050
关于科研通互助平台的介绍 1458976