Unlocking the Origins of Highly Reversible Lithium Storage and Stable Cycling in a Spinel High‐Entropy Oxide Anode for Lithium‐Ion Batteries

材料科学 阳极 尖晶石 电解质 电化学 化学工程 锂(药物) 电极 氧化物 储能 纳米技术 冶金 热力学 化学 物理化学 医学 工程类 内分泌学 功率(物理) 物理
作者
Shisheng Hou,Lin Su,Shuai Wang,Yujie Cui,Jiaqi Cao,Huihua Min,Jingze Bao,Yanbin Shen,Qichong Zhang,Zhefei Sun,Zhu Chen,Jing Chen,Qiaobao Zhang,Feng Xu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (4) 被引量:5
标识
DOI:10.1002/adfm.202307923
摘要

Abstract Developing high‐capacity conversion‐type anodes with superior durability substituting conventional graphite anodes is urgently desired to improve the energy density of lithium‐ion batteries (LIBs). However, fatal capacity decay during cycling of the conversion‐type anodes, which is primarily due to their inevitable structural degradation and continuous solid‐electrolyte interphase reformation induced by drastic volume change, has highly restricted their commercialization. And, the interrelated effects of phase transformation, structural evolution, and electrochemical characteristics of the conversion‐type anodes during cycling remain poorly understood. Herein, the findings on the fabrication and understanding of a previously unexplored entropy‐stabilized spinel oxide, (Co 0.2 Mn 0.2 V 0.2 Fe 0.2 Zn 0.2 ) 3 O 4 as a promising conversion anode for LIBs, exhibiting not only moderate volume change character but also highly reversible capacities of ≈900 mAh g −1 for 500 cycles at 0.2 A g −1 and ≈500 mAh g −1 for 2000 cycles at 3 A g −1 , respectively, are reported. Evidenced by in situ transmission electron microscopy coupled with theoretical calculations, its underlying mechanism underpinning highly reversible Li storage is explicitly revealed, which originates from reversible phase transformation and domain reconstruction during cycling. Moreover, the origin of small volume change is also clearly clarified. This work provides renewed mechanistic insights into designing high‐capacity and durable conversion‐type electrode materials for high‐performance LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的小松鼠完成签到,获得积分10
3秒前
赘婿应助未白镇常客采纳,获得10
4秒前
Ida完成签到,获得积分10
6秒前
看看不要钱完成签到,获得积分10
6秒前
何何发布了新的文献求助10
7秒前
8秒前
123完成签到,获得积分10
8秒前
psy完成签到,获得积分10
8秒前
9秒前
星空完成签到,获得积分10
10秒前
Justtry发布了新的文献求助30
11秒前
乐乐乐乐乐完成签到 ,获得积分10
11秒前
刘玲完成签到 ,获得积分10
12秒前
轻风完成签到,获得积分10
12秒前
MaFY发布了新的文献求助10
12秒前
12秒前
dlut0407完成签到,获得积分10
12秒前
端庄的煎蛋完成签到,获得积分10
13秒前
甜甜的hx发布了新的文献求助10
14秒前
风味烤羊腿完成签到,获得积分0
14秒前
悠然完成签到,获得积分10
14秒前
111发布了新的文献求助10
16秒前
16秒前
肿瘤柳叶刀完成签到,获得积分10
17秒前
xixisun发布了新的文献求助10
17秒前
xiao金完成签到,获得积分10
18秒前
初夏完成签到,获得积分10
18秒前
鲤鱼绮晴完成签到,获得积分10
19秒前
YUKIii完成签到,获得积分10
20秒前
huahua完成签到 ,获得积分10
21秒前
21秒前
笨笨小刺猬完成签到,获得积分10
24秒前
26秒前
神经蛙完成签到,获得积分10
28秒前
炬火完成签到,获得积分10
28秒前
28秒前
29秒前
chengs完成签到,获得积分10
29秒前
30秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2391999
求助须知:如何正确求助?哪些是违规求助? 2096674
关于积分的说明 5282223
捐赠科研通 1824237
什么是DOI,文献DOI怎么找? 909818
版权声明 559877
科研通“疑难数据库(出版商)”最低求助积分说明 486170