Unlocking the Origins of Highly Reversible Lithium Storage and Stable Cycling in a Spinel High‐Entropy Oxide Anode for Lithium‐Ion Batteries

材料科学 阳极 尖晶石 电解质 电化学 化学工程 锂(药物) 电极 氧化物 储能 纳米技术 冶金 热力学 化学 物理化学 医学 工程类 内分泌学 功率(物理) 物理
作者
Shisheng Hou,Lin Su,Shuai Wang,Yujie Cui,Junzhang Cao,Huihua Min,Jingze Bao,Yanbin Shen,Qichong Zhang,Zhefei Sun,Chongyang Zhu,Jing Chen,Qiaobao Zhang,Feng Xu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (4) 被引量:37
标识
DOI:10.1002/adfm.202307923
摘要

Abstract Developing high‐capacity conversion‐type anodes with superior durability substituting conventional graphite anodes is urgently desired to improve the energy density of lithium‐ion batteries (LIBs). However, fatal capacity decay during cycling of the conversion‐type anodes, which is primarily due to their inevitable structural degradation and continuous solid‐electrolyte interphase reformation induced by drastic volume change, has highly restricted their commercialization. And, the interrelated effects of phase transformation, structural evolution, and electrochemical characteristics of the conversion‐type anodes during cycling remain poorly understood. Herein, the findings on the fabrication and understanding of a previously unexplored entropy‐stabilized spinel oxide, (Co 0.2 Mn 0.2 V 0.2 Fe 0.2 Zn 0.2 ) 3 O 4 as a promising conversion anode for LIBs, exhibiting not only moderate volume change character but also highly reversible capacities of ≈900 mAh g −1 for 500 cycles at 0.2 A g −1 and ≈500 mAh g −1 for 2000 cycles at 3 A g −1 , respectively, are reported. Evidenced by in situ transmission electron microscopy coupled with theoretical calculations, its underlying mechanism underpinning highly reversible Li storage is explicitly revealed, which originates from reversible phase transformation and domain reconstruction during cycling. Moreover, the origin of small volume change is also clearly clarified. This work provides renewed mechanistic insights into designing high‐capacity and durable conversion‐type electrode materials for high‐performance LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坐忘道完成签到,获得积分10
刚刚
斯文败类应助顺利紫山采纳,获得10
刚刚
小二郎应助ygx采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
PINGAN发布了新的文献求助10
6秒前
6秒前
顾矜应助waswas采纳,获得10
6秒前
ding应助动听的语堂采纳,获得10
9秒前
犇骉发布了新的文献求助10
9秒前
HaiFeng发布了新的文献求助10
10秒前
werxcv3发布了新的文献求助10
10秒前
10秒前
zmn发布了新的文献求助10
11秒前
所所应助我是李白鹤采纳,获得10
11秒前
11秒前
wanci应助火龙果采纳,获得10
11秒前
Owen应助燕子采纳,获得50
12秒前
13秒前
13秒前
14秒前
冷眸发布了新的文献求助10
14秒前
wts发布了新的文献求助10
15秒前
所所应助高妍纯采纳,获得10
15秒前
drtianyunhong发布了新的文献求助10
16秒前
Dellamoffy完成签到,获得积分10
16秒前
老迟到的绾绾关注了科研通微信公众号
16秒前
17秒前
dajiejie发布了新的文献求助10
18秒前
18秒前
zhuyouwang发布了新的文献求助10
19秒前
孤独尔安完成签到 ,获得积分10
19秒前
werxcv3完成签到,获得积分20
20秒前
陈晓真完成签到,获得积分10
20秒前
21秒前
火龙果发布了新的文献求助10
23秒前
今天不看文献完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4332959
求助须知:如何正确求助?哪些是违规求助? 3844853
关于积分的说明 12010289
捐赠科研通 3485463
什么是DOI,文献DOI怎么找? 1913011
邀请新用户注册赠送积分活动 956323
科研通“疑难数据库(出版商)”最低求助积分说明 857167