Molecular subtyping for lung adenocarcinoma and a novel prognostic model based on ligand-receptor pairs

腺癌 亚型 肺癌 医学 阿卡克信息准则 肿瘤科 内科学 比例危险模型 Lasso(编程语言) 癌症 生物信息学 生物 机器学习 计算机科学 万维网 程序设计语言
作者
Dong Li,Xu-chen Ma,Song-lei Ou
出处
期刊:Advances in Medical Sciences [Elsevier]
卷期号:67 (2): 316-327
标识
DOI:10.1016/j.advms.2022.08.004
摘要

Lung adenocarcinoma (LUAD) is a leading cause of cancer death worldwide. Ligands and receptors play important roles in cell communication. This study aimed to demonstrate the importance of ligand-receptor (LR) pairs in LUAD development through constructing molecular subtypes and a prognostic model based on LR pairs.A total of 1110 LUAD samples with clinical and expression data were obtained from public databases. Unsupervised consensus clustering was applied to construct molecular subtypes based on LR pairs. Least absolute shrinkage and selection operator (LASSO) Cox regression and stepwise Akaike information criterion (stepAIC) were conducted to build a prognostic model.Three molecular subtypes (C1, C2 and C3) were constructed based on 17 prognosis-related LR pairs. C1 subtype had the worst prognosis, while C3 subtype had the optimal prognosis. Oncogenic pathways such as epithelial-mesenchymal transition (EMT) were activated in C1 subtype. A prognostic model was built based on 8 LR pairs, and could classify samples into high- and low-LR score groups. Two groups had distinct overall survival and tumor microenvironment (TME). High-LR score group was more sensitive to chemotherapeutic drugs, while low-LR score group could benefit much from anti-PD-1/PD-L1 therapy.The study showed that LR pairs played critical roles in LUAD development. The prognostic model could predict prognosis and guide personalized therapy for LUAD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的从露完成签到,获得积分10
2秒前
x123发布了新的文献求助30
3秒前
彭于晏应助YDY采纳,获得10
3秒前
蓝天应助GFY采纳,获得10
8秒前
烟花应助小米采纳,获得10
8秒前
阿莉大王完成签到 ,获得积分10
8秒前
勤奋花瓣完成签到,获得积分10
9秒前
9秒前
10秒前
12秒前
斯文败类应助我不吃辣条采纳,获得10
13秒前
轻松的大米完成签到,获得积分10
13秒前
16秒前
LIZ发布了新的文献求助10
17秒前
何文军发布了新的文献求助10
17秒前
18秒前
19秒前
messyknots完成签到,获得积分10
19秒前
大模型应助Qiis采纳,获得10
19秒前
Hannah完成签到,获得积分10
20秒前
21秒前
Seven发布了新的文献求助10
23秒前
沉默的板凳完成签到,获得积分10
24秒前
25秒前
monly发布了新的文献求助10
26秒前
27秒前
二柱子完成签到,获得积分10
27秒前
断路天行完成签到,获得积分10
29秒前
Qiis发布了新的文献求助10
30秒前
31秒前
johne完成签到 ,获得积分10
32秒前
33秒前
何文军完成签到,获得积分10
34秒前
脑洞疼应助小孟采纳,获得10
35秒前
36秒前
WuYujie发布了新的文献求助10
38秒前
hatim完成签到,获得积分10
39秒前
BB88发布了新的文献求助10
40秒前
科研通AI6.1应助biggun采纳,获得10
41秒前
只会发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5838590
求助须知:如何正确求助?哪些是违规求助? 6133681
关于积分的说明 15601499
捐赠科研通 4956671
什么是DOI,文献DOI怎么找? 2671785
邀请新用户注册赠送积分活动 1616939
关于科研通互助平台的介绍 1571997