Urine fluorescence spectroscopy combined with machine learning for screening of hepatocellular carcinoma and liver cirrhosis

肝硬化 肝细胞癌 尿 胃肠病学 医学 内科学 病理
作者
Jingrui Dou,Wubulitalifu Dawuti,Xiangxiang Zheng,Rui Zhang,Jing Zhou,Renyong Lin,Guodong Lü
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:40: 103102-103102 被引量:10
标识
DOI:10.1016/j.pdpdt.2022.103102
摘要

In this paper, we investigated the possibility of using urine fluorescence spectroscopy and machine learning method to identify hepatocellular carcinoma (HCC) and liver cirrhosis from healthy people. Urine fluorescence spectra of HCC (n = 62), liver cirrhosis (n = 65) and normal people (n = 60) were recorded at 405 nm excitation using a Fluorescent scan multimode reader. The normalized fluorescence spectra revealed endogenous metabolites differences associated with the disease, mainly the abnormal metabolism of porphyrin derivatives and bilirubin in the urine of patients with HCC and liver cirrhosis compared to normal people. The Support vector machine (SVM) algorithm was used to differentiate the urine fluorescence spectra of the HCC, liver cirrhosis and normal groups, and its overall diagnostic accuracy was 83.42%, the sensitivity for HCC and liver cirrhosis were 93.55% and 73.85%, and the specificity for HCC and liver cirrhosis were 88.00% and 89.34%, respectively. This exploratory work shown that the combination of urine fluorescence spectroscopy and SVM algorithm has great potential for the noninvasive screening of HCC and liver cirrhosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
失眠柚子完成签到 ,获得积分10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助蛋黄派采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
酷波er应助木槿采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
4秒前
7秒前
情怀应助qianhuxinyu采纳,获得10
11秒前
JJ完成签到 ,获得积分10
11秒前
1351019发布了新的文献求助10
13秒前
16秒前
微光熠发布了新的文献求助10
20秒前
纯真的志泽完成签到 ,获得积分10
23秒前
祝英台完成签到,获得积分10
25秒前
26秒前
27秒前
南风不竞完成签到,获得积分10
27秒前
1351019完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837604
求助须知:如何正确求助?哪些是违规求助? 6124363
关于积分的说明 15598873
捐赠科研通 4955824
什么是DOI,文献DOI怎么找? 2671241
邀请新用户注册赠送积分活动 1616495
关于科研通互助平台的介绍 1571527