YOLO-PowerLite: A Lightweight YOLO Model for Transmission Line Abnormal Target Detection

实时计算 计算机科学 电力传输 特征(语言学) 目标检测 传输(电信) 光学(聚焦) 嵌入式系统 计算机视觉 模拟 人工智能 模式识别(心理学) 电信 工程类 物理 哲学 光学 电气工程 语言学
作者
Chuanyao Liu,Shuangfeng Wei,Shaobo Zhong,Fan Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 105004-105015 被引量:3
标识
DOI:10.1109/access.2024.3434687
摘要

The secure and stable operation of power transmission lines is essential for electrical systems. Given that abnormal targets such as bird's nests and defective insulators may lead to transmission failures, timely detection of these targets is imperative. This paper introduces the YOLO-PowerLite model, an advanced lightweight object detection model based on YOLOv8n, designed for efficient, real-time detection on resource-constrained unmanned aerial vehicles (UAVs) equipped with edge computing platforms. In the feature fusion module, YOLO-PowerLite incorporates the innovative C2f_AK module, significantly reducing the number of parameters and enhancing the adaptability and fusion capability of features at different scales. Meanwhile, the adoption of the Bidirectional Feature Pyramid Network (BiFPN) further optimizes the efficiency and effectiveness of feature processing. In addition, the newly designed lightweight detection head significantly reduces the number of parameters and computational requirements. The integration of the Coordinate Attention mechanism in the backbone network enhances the model's ability to focus on and recognize abnormal targets in complex backgrounds. Experimental results show that YOLO-PowerLite achieves a mAP@0.5 of 94.2%, maintaining the accuracy of the original YOLOv8n while significantly reducing parameters, FLOPs, and model size by 42.3%, 30.9%, and 40.4%, respectively. Comparative analysis shows that YOLO-PowerLite surpasses other mainstream lightweight models in detection accuracy and computational efficiency. Deployment on the NVIDIA Jetson Xavier NX platform demonstrates an average processing time of 31.2 milliseconds per frame, highlighting its potential for real-time applications in monitoring transmission lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
领导范儿应助啦啦啦采纳,获得10
1秒前
11应助沧浪采纳,获得10
2秒前
麻瓜完成签到,获得积分10
2秒前
2秒前
voice发布了新的文献求助20
3秒前
可爱的函函应助李敏采纳,获得10
4秒前
啦啦啦啦发布了新的文献求助30
4秒前
Thea发布了新的文献求助10
4秒前
滨滨发布了新的文献求助10
4秒前
5秒前
liu发布了新的文献求助10
5秒前
6秒前
小乐完成签到 ,获得积分10
6秒前
pgojpogk发布了新的文献求助10
6秒前
许晴完成签到,获得积分10
6秒前
wubo完成签到,获得积分10
6秒前
阿特拉斯耸耸肩完成签到,获得积分10
7秒前
在水一方应助ANTianxu采纳,获得10
7秒前
zzeru21发布了新的文献求助150
7秒前
8秒前
9秒前
paobashan发布了新的文献求助10
11秒前
斯文败类应助何时到达采纳,获得30
11秒前
贝贝发布了新的文献求助30
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
allrubbish发布了新的文献求助10
13秒前
kk完成签到 ,获得积分10
13秒前
李爱国应助han采纳,获得10
14秒前
稳重忆枫发布了新的文献求助30
14秒前
William完成签到 ,获得积分10
14秒前
5tcl发布了新的文献求助10
14秒前
小乐完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助30
15秒前
qtww发布了新的文献求助10
16秒前
啦啦啦发布了新的文献求助10
16秒前
小马甲应助Hua采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793434
求助须知:如何正确求助?哪些是违规求助? 5749108
关于积分的说明 15485670
捐赠科研通 4920349
什么是DOI,文献DOI怎么找? 2648838
邀请新用户注册赠送积分活动 1596225
关于科研通互助平台的介绍 1550793