YOLO-PowerLite: A Lightweight YOLO Model for Transmission Line Abnormal Target Detection

实时计算 计算机科学 电力传输 特征(语言学) 目标检测 传输(电信) 光学(聚焦) 嵌入式系统 计算机视觉 模拟 人工智能 模式识别(心理学) 电信 工程类 物理 哲学 光学 电气工程 语言学
作者
Chuanyao Liu,Shuangfeng Wei,Shaobo Zhong,Fan Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 105004-105015 被引量:3
标识
DOI:10.1109/access.2024.3434687
摘要

The secure and stable operation of power transmission lines is essential for electrical systems. Given that abnormal targets such as bird's nests and defective insulators may lead to transmission failures, timely detection of these targets is imperative. This paper introduces the YOLO-PowerLite model, an advanced lightweight object detection model based on YOLOv8n, designed for efficient, real-time detection on resource-constrained unmanned aerial vehicles (UAVs) equipped with edge computing platforms. In the feature fusion module, YOLO-PowerLite incorporates the innovative C2f_AK module, significantly reducing the number of parameters and enhancing the adaptability and fusion capability of features at different scales. Meanwhile, the adoption of the Bidirectional Feature Pyramid Network (BiFPN) further optimizes the efficiency and effectiveness of feature processing. In addition, the newly designed lightweight detection head significantly reduces the number of parameters and computational requirements. The integration of the Coordinate Attention mechanism in the backbone network enhances the model's ability to focus on and recognize abnormal targets in complex backgrounds. Experimental results show that YOLO-PowerLite achieves a mAP@0.5 of 94.2%, maintaining the accuracy of the original YOLOv8n while significantly reducing parameters, FLOPs, and model size by 42.3%, 30.9%, and 40.4%, respectively. Comparative analysis shows that YOLO-PowerLite surpasses other mainstream lightweight models in detection accuracy and computational efficiency. Deployment on the NVIDIA Jetson Xavier NX platform demonstrates an average processing time of 31.2 milliseconds per frame, highlighting its potential for real-time applications in monitoring transmission lines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanghuahua发布了新的文献求助10
1秒前
600完成签到,获得积分10
1秒前
JamesPei应助懒羊羊采纳,获得10
1秒前
Li完成签到,获得积分10
1秒前
2秒前
科研通AI6.1应助小蛙采纳,获得10
3秒前
3秒前
Ryan完成签到 ,获得积分10
3秒前
下次一定发布了新的文献求助10
3秒前
4秒前
乐乐应助炙热笑旋采纳,获得10
5秒前
万能图书馆应助rudjs采纳,获得10
5秒前
KKKKKKK完成签到,获得积分10
6秒前
chelsea完成签到,获得积分10
7秒前
月无痕moon完成签到,获得积分10
7秒前
memebao发布了新的文献求助10
8秒前
zhuhui1224发布了新的文献求助10
9秒前
阿北完成签到,获得积分10
9秒前
11秒前
11秒前
zhengzehong完成签到,获得积分10
12秒前
13秒前
阿北发布了新的文献求助10
13秒前
科研通AI6.1应助holly采纳,获得10
13秒前
14秒前
脑洞疼应助范范采纳,获得10
15秒前
陈末发布了新的文献求助10
15秒前
amault完成签到,获得积分10
16秒前
秋半梦完成签到,获得积分10
17秒前
holly发布了新的文献求助10
18秒前
Owen应助Cheung2121采纳,获得30
18秒前
18秒前
边边角角落落完成签到,获得积分10
19秒前
19秒前
yznfly应助虚心的思真采纳,获得50
19秒前
20秒前
wang完成签到,获得积分20
20秒前
河道蟹完成签到,获得积分10
21秒前
FlipFlops完成签到,获得积分10
22秒前
科研通AI6.1应助Rosemary采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5792937
求助须知:如何正确求助?哪些是违规求助? 5745143
关于积分的说明 15484281
捐赠科研通 4920047
什么是DOI,文献DOI怎么找? 2648640
邀请新用户注册赠送积分活动 1595929
关于科研通互助平台的介绍 1550667