The use of predictive modelling to determine the likelihood of donor return during the COVID‐19 pandemic

捐赠 预测建模 医学 2019年冠状病毒病(COVID-19) 献血者 大流行 预测值 献血 输血 人口学 外科 计算机科学 机器学习 免疫学 内科学 经济 疾病 社会学 传染病(医学专业) 经济增长
作者
Richard R. Gammon,Salwa Hindawi,Arwa Z. Al‐Riyami,Ai Leen Ang,Renée Bazin,Evan M. Bloch,Kelley Counts,Vincenzo De Angelis,Ruchika Goel,Rada M. Grubovic Rastvorceva,Ilaria Pati,Cheuk‐Kwong Lee,Massimo La Raja,Carlo Mengoli,Adaeze Oreh,Gopal Kumar Patidar,Naomi Rahimi‐Levene,Usharee Ravula,Karl Rexer,Cynthia So‐Osman
出处
期刊:Transfusion Medicine [Wiley]
卷期号:34 (5): 333-343 被引量:2
标识
DOI:10.1111/tme.13071
摘要

Abstract Artificial intelligence (AI) uses sophisticated algorithms to “learn” from large volumes of data. This could be used to optimise recruitment of blood donors through predictive modelling of future blood supply, based on previous donation and transfusion demand. We sought to assess utilisation of predictive modelling and AI blood establishments (BE) and conducted predictive modelling to illustrate its use. A BE survey of data modelling and AI was disseminated to the International Society of Blood transfusion members. Additional anonymzed data were obtained from Italy, Singapore and the United States (US) to build predictive models for each region, using January 2018 through August 2019 data to determine likelihood of donation within a prescribed number of months. Donations were from March 2020 to June 2021. Ninety ISBT members responded to the survey. Predictive modelling was used by 33 (36.7%) respondents and 12 (13.3%) reported AI use. Forty‐four (48.9%) indicated their institutions do not utilise predictive modelling nor AI to predict transfusion demand or optimise donor recruitment. In the predictive modelling case study involving three sites, the most important variable for predicting donor return was number of previous donations for Italy and the US, and donation frequency for Singapore. Donation rates declined in each region during COVID‐19. Throughout the observation period the predictive model was able to consistently identify those individuals who were most likely to return to donate blood. The majority of BE do not use predictive modelling and AI. The effectiveness of predictive model in determining likelihood of donor return was validated; implementation of this method could prove useful for BE operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Di喵喵完成签到,获得积分10
1秒前
NexusExplorer应助陶兜兜采纳,获得10
2秒前
温瞳发布了新的文献求助10
2秒前
2秒前
乐观的莫茗完成签到 ,获得积分10
3秒前
3秒前
KK完成签到,获得积分10
3秒前
annie完成签到,获得积分10
4秒前
yy111发布了新的文献求助10
4秒前
6秒前
von发布了新的文献求助10
7秒前
无花果应助醉熏的小伙采纳,获得10
7秒前
8秒前
FashionBoy应助jenna采纳,获得10
8秒前
8秒前
刘一帆完成签到 ,获得积分20
11秒前
ti发布了新的文献求助10
11秒前
Harden完成签到,获得积分10
11秒前
烟花应助Wang采纳,获得10
12秒前
干大事的小喽啰完成签到,获得积分10
13秒前
13秒前
lj发布了新的文献求助10
13秒前
13秒前
田様应助晚意采纳,获得10
14秒前
烟花应助NMSL采纳,获得10
14秒前
15秒前
15秒前
17秒前
17秒前
高大的小蕊完成签到,获得积分10
17秒前
17秒前
song完成签到 ,获得积分10
18秒前
18秒前
醒了没醒醒完成签到 ,获得积分10
18秒前
沈才佳完成签到 ,获得积分10
19秒前
19秒前
善学以致用应助lingyu采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218