Using visible-near infrared spectroscopy to estimate whole-profile soil organic carbon and its fractions

土壤碳 偏最小二乘回归 决定系数 相关系数 环境科学 总有机碳 固碳 碳纤维 土工试验 土壤科学 化学 环境化学 土壤水分 二氧化碳 数学 算法 统计 复合数 有机化学
作者
Mingxuan Qi,Songchao Chen,Yu‐Chen Wei,Hangxin Zhou,Shuai Zhang,Mingming Wang,Jinyang Zheng,Raphael A. Viscarra Rossel,Jinfeng Chang,Zhou Shi,Zhongkui Luo
标识
DOI:10.1016/j.seh.2024.100100
摘要

Soil organic carbon (SOC) is crucial for soil health and quality, and its sequestration has been suggested as a natural solution to climate change. Accurate and cost-efficient determination of SOC and its functional fractions is essential for effective SOC management. Visible near-infrared spectroscopy (vis-NIR) has emerged as a cost-efficient approach. However, its ability to predict whole-profile SOC content and its fractions has rarely been assessed. Here, we measured SOC and its two functional fractions, particulate (POC) and mineral-associated organic carbon (MAOC), down to a depth of 200 ​cm in seven sequential layers across 183 dryland cropping fields in northwest, southwest, and south China. Then, vis-NIR spectra of the soil samples were collected to train a machine learning model (partial least squares regression) to predict SOC, POC, MAOC, and the ratio of MAOC to SOC (MAOC/SOC – an index of carbon vulnerability). We found that the accuracy of the model indicated by the determination coefficient of validation (Rval2) is 0.39, 0.30, 0.49, and 0.48 for SOC, POC, MAOC, and MAOC/SOC, respectively. Incorporating mean annual temperature improved model performance, and Rval2 was increased to 0.64, 0.31, 0.63, and 0.51 for the four carbon variables, respectively. Further incorporating SOC into the model increased Rval2 to 0.82, 0.64, and 0.59, respectively. These results suggest that combining vis-NIR spectroscopy with readily-available climate data and total SOC measurements enables fast and accurate estimation of whole-profile POC and MAOC across diverse environmental conditions, facilitating reliable prediction of whole-profile SOC dynamics over large spatial extents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
欧欧完成签到,获得积分10
1秒前
曹路杨发布了新的文献求助30
1秒前
1秒前
123发布了新的文献求助10
1秒前
2秒前
傲震完成签到 ,获得积分10
2秒前
冶金人完成签到,获得积分10
3秒前
3秒前
4秒前
袁清洁完成签到,获得积分10
4秒前
CipherSage应助Chany采纳,获得10
4秒前
4秒前
adi完成签到,获得积分10
5秒前
小马一家发布了新的文献求助10
5秒前
传奇3应助wgl200212采纳,获得10
5秒前
脑洞疼应助123采纳,获得10
5秒前
隐形曼青应助ning采纳,获得10
6秒前
友好的如豹完成签到,获得积分10
6秒前
7秒前
木光发布了新的文献求助10
7秒前
8秒前
眼睛大樱桃完成签到,获得积分10
8秒前
学术疯子完成签到,获得积分10
8秒前
知秋发布了新的文献求助10
8秒前
illmaticRui发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助150
9秒前
科研通AI6应助ht采纳,获得10
10秒前
Lucas应助漪涙采纳,获得10
10秒前
10秒前
科目三应助夏末采纳,获得10
11秒前
11秒前
ding应助嘻嘻采纳,获得10
11秒前
简易完成签到,获得积分10
12秒前
zal发布了新的文献求助10
12秒前
1111完成签到,获得积分10
12秒前
赘婿应助小马一家采纳,获得10
12秒前
简单友蕊发布了新的文献求助20
12秒前
Hello应助Silverexile采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155889
求助须知:如何正确求助?哪些是违规求助? 4351488
关于积分的说明 13549100
捐赠科研通 4194416
什么是DOI,文献DOI怎么找? 2300527
邀请新用户注册赠送积分活动 1300474
关于科研通互助平台的介绍 1245484