Machine Learning-Based Toxicological Modeling for Screening Environmental Obesogens

计算机科学 环境科学 环境规划
作者
Siying Wu,Linping Wang,Daniel Schlenk,Jing Liu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (41): 18133-18144
标识
DOI:10.1021/acs.est.4c05070
摘要

The emerging presence of environmental obesogens, chemicals that disrupt energy balance and contribute to adipogenesis and obesity, has become a major public health challenge. Molecular initiating events (MIEs) describe biological outcomes resulting from chemical interactions with biomolecules. Machine learning models based on MIEs can predict complex toxic end points due to chemical exposure and improve the interpretability of models. In this study, a system was constructed that integrated six MIEs associated with adipogenesis and obesity. This system showed high accuracy in external validation, with an area under the receiver operating characteristic curve of 0.78. Molecular hydrophobicity (SlogP_VSA) and direct electrostatic interactions (PEOE_VSA) were identified as the two most critical molecular descriptors representing the obesogenic potential of chemicals. This system was further used to predict the obesogenic effects of chemicals on the candidate list of substances of very high concern (SVHCs). Results from 3T3-L1 adipogenesis assays verified that the system correctly predicted obesogenic or nonobesogenic effects of 10 of the 12 SVHCs tested, and identified four novel potential obesogens, including 2-benzotriazol-2-yl-4,6-di
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋浱完成签到,获得积分10
刚刚
miuu完成签到,获得积分10
3秒前
4秒前
6秒前
8秒前
酷酷的库库完成签到,获得积分10
11秒前
12秒前
HOKUTO完成签到,获得积分10
13秒前
13秒前
13秒前
HOKUTO发布了新的文献求助10
15秒前
hellosci666完成签到,获得积分10
16秒前
17秒前
小南发布了新的文献求助10
17秒前
zho发布了新的文献求助10
18秒前
充电宝应助fh采纳,获得10
18秒前
PSCs完成签到,获得积分10
19秒前
ZH完成签到 ,获得积分10
19秒前
Research完成签到 ,获得积分10
22秒前
23秒前
李西瓜完成签到 ,获得积分10
25秒前
25秒前
Akim应助小南采纳,获得10
25秒前
27秒前
忧郁的天亦完成签到,获得积分20
29秒前
芥末猫发布了新的文献求助10
29秒前
平凡世界完成签到 ,获得积分10
30秒前
30秒前
谦让月饼完成签到 ,获得积分10
31秒前
32秒前
ShiRz发布了新的文献求助10
34秒前
35秒前
SciGPT应助科研通管家采纳,获得10
36秒前
乐乐应助科研通管家采纳,获得10
36秒前
37秒前
善学以致用应助hwezhu采纳,获得10
38秒前
40秒前
42秒前
RYS发布了新的文献求助20
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326688
关于积分的说明 10228085
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799109
科研通“疑难数据库(出版商)”最低求助积分说明 758751