Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis

计算机科学 队列 人工智能 癌症 医学 内科学
作者
Huajun Zhou,Fengtao Zhou,Hao Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3455931
摘要

Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant challenges for extracting discriminative representations while maintaining good generalization. In this paper, we propose a Cohortindividual Cooperative Learning (CCL) framework to advance cancer survival analysis by collaborating knowledge decomposition and cohort guidance. Specifically, first, we propose a Multimodal Knowledge Decomposition (MKD) module to explicitly decompose multimodal knowledge into four distinct components: redundancy, synergy and uniqueness of the two modalities. Such a comprehensive decomposition can enlighten the models to perceive easily overlooked yet important information, facilitating an effective multimodal fusion. Second, we propose a Cohort Guidance Modeling (CGM) to mitigate the risk of overfitting task-irrelevant information. It can promote a more comprehensive and robust understanding of the underlying multimodal data, while avoiding the pitfalls of overfitting and enhancing the generalization ability of the model. By cooperating the knowledge decomposition and cohort guidance methods, we develop a robust multimodal survival analysis model with enhanced discrimination and generalization abilities. Extensive experimental results on five cancer datasets demonstrate the effectiveness of our model in integrating multimodal data for survival analysis. The code will be publicly available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助rrrrroxie采纳,获得10
4秒前
5秒前
陆柒捌发布了新的文献求助10
5秒前
7秒前
7秒前
yduan发布了新的文献求助10
9秒前
陆柒捌完成签到,获得积分10
12秒前
LiuHK发布了新的文献求助10
13秒前
14秒前
17秒前
20秒前
20秒前
21秒前
ifast完成签到 ,获得积分10
23秒前
科研通AI5应助iwhsgfes采纳,获得10
23秒前
阿尔法贝塔完成签到 ,获得积分10
24秒前
25秒前
yduan完成签到,获得积分20
25秒前
852应助小也采纳,获得10
25秒前
完美世界应助vivia采纳,获得10
27秒前
28秒前
Chem34发布了新的文献求助10
31秒前
乐乐应助一起采纳,获得10
31秒前
pjxxx完成签到 ,获得积分10
32秒前
imlarry发布了新的文献求助10
33秒前
So完成签到 ,获得积分10
38秒前
89757发布了新的文献求助10
38秒前
fffffffffffffff完成签到 ,获得积分10
42秒前
imlarry完成签到,获得积分10
43秒前
45秒前
rrrrroxie发布了新的文献求助10
51秒前
anny.white完成签到,获得积分10
54秒前
乐乐应助小鼠鼠的小狐狸采纳,获得30
54秒前
55秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385