A multiscale hybrid modelling methodology for cell cultures enabled by enzyme-constrained dynamic metabolic flux analysis under uncertainty

焊剂(冶金) 代谢通量分析 代谢工程 计算机科学 生物系统 计算生物学 生化工程 生物化学 生物 化学 工程类 新陈代谢 有机化学
作者
Oliver Pennington,Sebastián Espinel‐Ríos,Mauro Torres Sebastian,Alan J. Dickson,Dongda Zhang
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:86: 274-287
标识
DOI:10.1016/j.ymben.2024.10.013
摘要

Mammalian cell cultures make a significant contribution to the pharmaceutical industry. They produce many of the biopharmaceuticals obtaining FDA-approval each year. Motivated by quality-by-design principles, various modelling methodologies are frequently trialled to gain insight into these bioprocesses. However, these systems are highly complex and uncertain, involving dynamics at different scales, both in time and space, making them challenging to model in a comprehensive and fully mechanistic manner. This study develops a machine-learning-supported multiscale modelling framework of cell cultures, linking the macroscale bioprocess dynamics to the microscale metabolic flux distribution. As a relevant biopharmaceutical case study, we consider the production of Trastuzumab by Chinese Hamster Ovary (CHO) cells in batch. A macroscale hybrid model is constructed by integrating macro-kinetic and machine-learning approaches. Enzyme-constrained Dynamic Metabolic Flux Analysis (ecDMFA) is adopted to calculate flux distributions based on the dynamic predictions of the hybrid model. Uncertainty estimation of the multiscale model is conducted through bootstrapping. Judging from experimental data, our hybrid model can reduce the modelling error of the macroscale dynamics to 8.0%; a 70% reduction from the purely mechanistic model. In addition, the predicted dynamic flux distribution aligns with observations seen in literature, highlighting important metabolic changes throughout the process. Model uncertainty is maintained at a low level, demonstrating the trustworthiness of the predictions. Overall, our comprehensive modelling framework has the potential to facilitate the development of digital twins in the biopharmaceutical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘一三完成签到 ,获得积分10
2秒前
熊雅完成签到,获得积分10
3秒前
Xzmmmm完成签到,获得积分10
4秒前
加贝完成签到 ,获得积分10
5秒前
矮小的凡阳完成签到 ,获得积分10
6秒前
打打应助andy采纳,获得10
7秒前
无味完成签到,获得积分10
9秒前
谨慎的友安完成签到 ,获得积分10
9秒前
激昂的秀发完成签到,获得积分10
10秒前
像猫的狗完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
顾矜应助无不破哉采纳,获得10
14秒前
naiyouqiu1989完成签到,获得积分10
16秒前
如梦发布了新的文献求助10
18秒前
打打应助周小鱼采纳,获得10
19秒前
Cynthia完成签到 ,获得积分10
20秒前
KK完成签到,获得积分10
21秒前
21秒前
李建勋完成签到,获得积分10
25秒前
27秒前
28秒前
和平港湾发布了新的文献求助10
33秒前
无不破哉发布了新的文献求助10
34秒前
ES完成签到 ,获得积分0
35秒前
安详凡完成签到 ,获得积分10
35秒前
活泼山雁完成签到,获得积分10
36秒前
乐枳完成签到 ,获得积分10
38秒前
无不破哉完成签到,获得积分20
40秒前
dxurp完成签到,获得积分10
43秒前
lmy完成签到 ,获得积分10
48秒前
wwl完成签到,获得积分10
49秒前
dent强完成签到,获得积分10
50秒前
健壮的思枫完成签到,获得积分10
52秒前
JevonCheung完成签到 ,获得积分10
53秒前
Hastur00完成签到 ,获得积分10
54秒前
研都不研了完成签到 ,获得积分10
55秒前
水瓶鱼完成签到,获得积分0
56秒前
fay1987完成签到,获得积分10
58秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344118
关于积分的说明 10318643
捐赠科研通 3060696
什么是DOI,文献DOI怎么找? 1679769
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353