Artificial Intelligence‐Driven Nanoarchitectonics for Smart Targeted Drug Delivery

材料科学 纳米技术 药物输送 靶向给药 药品 系统工程 工程类 医学 药理学
作者
Hayeon Bae,Hyunjin Ji,Konstantin Konstantinov,Ronald Sluyter,Katsuhiko Ariga,Yong Ho Kim,Jung Ho Kim
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202510239
摘要

The development of data-driven and targeted drug delivery systems is essential for advancing precision therapeutics. Despite substantial progress in nanocarrier development, conventional platforms continue to face major challenges in clinical translation due to biological complexity, off-target accumulation, and limited adaptability to dynamic physiological environments. The integration of nanoarchitectonics and artificial intelligence (AI) offers an advanced strategy for engineering delivery systems that are structurally programmable, stimuli-responsive, and autonomously optimized. Nanoarchitectonics enables the construction of hierarchical nanostructures with precise spatial and temporal control, while AI facilitates modeling, prediction, and iterative optimization throughout the development pipeline. In this perspective, an AI-driven nanoarchitectonics framework is introduced for targeted drug delivery, structured around three key phases: 1) molecular target identification through bioinformatic profiling, 2) machine learning (ML)-guided surface engineering to enhance targeting specificity, and 3) in silico modeling of delivery dynamics and systemic distribution. Drawing on recent advances and representative case studies, how AI tools are illustrated, from generative design algorithms to predictive pharmacokinetic models, are transforming the field from empirical formulation toward mechanism-informed and AI-driven intelligent design. By highlighting current limitations and outlining future directions for the integration of AI and nanoarchitectonics, are concluded with a focus on enabling clinically translatable nanomedicine platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
夏夏完成签到,获得积分10
1秒前
吴所谓完成签到,获得积分10
1秒前
2秒前
Nancy发布了新的文献求助10
2秒前
Yan发布了新的文献求助10
2秒前
燕小丙完成签到,获得积分10
3秒前
小猪佩奇发布了新的文献求助10
3秒前
李健的小迷弟应助Loooong采纳,获得10
3秒前
枫叶发布了新的文献求助10
3秒前
HHH完成签到,获得积分10
3秒前
3秒前
a553355发布了新的文献求助10
3秒前
4秒前
4秒前
方圆几里发布了新的文献求助10
4秒前
苏楠完成签到 ,获得积分10
4秒前
可爱的函函应助爬不起来采纳,获得10
4秒前
动听衬衫应助zz采纳,获得20
4秒前
尉迟希望应助激昂的初阳采纳,获得10
5秒前
脑洞疼应助风清扬采纳,获得10
6秒前
6秒前
阿彬完成签到,获得积分20
6秒前
Selina完成签到 ,获得积分10
6秒前
何海发布了新的文献求助10
6秒前
Criminology34应助俏皮的荔枝采纳,获得10
7秒前
成就飞莲完成签到,获得积分10
7秒前
wu关注了科研通微信公众号
7秒前
无花果应助lsl采纳,获得10
7秒前
慕青应助中科路2020采纳,获得10
7秒前
ldkshifo完成签到,获得积分10
8秒前
现代的雪糕完成签到,获得积分10
8秒前
平陆成江完成签到,获得积分20
8秒前
zw应助蟹黄堡秘方出售采纳,获得10
9秒前
寂寞的寄文完成签到,获得积分10
9秒前
万能图书馆应助迷航采纳,获得10
9秒前
精明的听寒完成签到,获得积分10
10秒前
顾矜应助枫叶采纳,获得10
10秒前
热爱生活的打工人完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258050
求助须知:如何正确求助?哪些是违规求助? 4419997
关于积分的说明 13758921
捐赠科研通 4293480
什么是DOI,文献DOI怎么找? 2356024
邀请新用户注册赠送积分活动 1352424
关于科研通互助平台的介绍 1313196