A Two‐Stage Recognition and Planning Approach for Grasping Manipulators and Design of End‐Effectors

人工智能 计算机科学 控制工程 机器人末端执行器 操纵器(设备) 阶段(地层学) 控制理论(社会学) 工程类 机器人 控制(管理) 生物 古生物学
作者
Jie Lian,Qinghui Pan,Dong Wang
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.70031
摘要

ABSTRACT The development of selective harvesting robotics in agriculture and horticulture has gained a lot of attention and momentum in recent years, but commercial products are still lacking. This paper develops a sweet pepper harvesting robot and focuses on sweet pepper peduncle detection, the design of the end‐effector, and the motion planning of the manipulator to improve the harvesting success rate. To address the low recognition accuracy of sweet pepper peduncles, a detection algorithm designed explicitly for sweet pepper peduncles is proposed by storing the observation position in advance, which involves dividing the recognition process into two steps. The recognition success rate of picking points is 94.4%. To address the problem of low efficiency and low success rate of harvesting robots, a two‐stage motion planning (TSMP) method is proposed to divide the whole picking process into offline and online planning. Offline planning adopts a database to plan trajectories to pre‐stored observation points to ensure that the manipulator identification of fruit peduncles at close range is with solutions and the trajectory is reliable, while online planning proposes an adaptive end‐effector grasping pose control algorithm and analyzes and calculates the best grasping pose for the manipulator based on the sweet pepper peduncles pose. A novel sweet pepper end‐effector is designed and integrated into a fully automatic harvesting robot system. Finally, the proposed method is experimentally verified on the developed sweet pepper harvesting robot. The field experiment results demonstrate that the robot can continuously harvest sweet peppers with a harvesting success rate of 77.16%. The average picking time is about 15 s with a fruit recovery device. Supplementary video is available at https://www.youtube.com/watch?v=vnlRTkjPD2U .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lilili完成签到 ,获得积分10
1秒前
科研通AI6应助exy采纳,获得10
1秒前
烟花应助马皓采纳,获得10
1秒前
和谐青柏应助甜甜球采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助Technal采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
天天快乐应助原初采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621186
求助须知:如何正确求助?哪些是违规求助? 4705891
关于积分的说明 14933936
捐赠科研通 4764772
什么是DOI,文献DOI怎么找? 2551485
邀请新用户注册赠送积分活动 1514008
关于科研通互助平台的介绍 1474746