清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deadline‐Aware Task Scheduling in Fog‐Cloud Computing Using Multi‐Agent Reinforcement Learning and Software‐Defined Network Security

计算机科学 强化学习 云计算 分布式计算 调度(生产过程) 雾计算 任务(项目管理) 计算机网络 操作系统 人工智能 运营管理 经济 管理
作者
Javid Ali Liakath,Lathaselvi Gandhimaruthian,Manikandan Nanajappan,Ramya Jegatheeshan
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (25-26)
标识
DOI:10.1002/cpe.70258
摘要

ABSTRACT Task offloading and resource scheduling in fog‐cloud Internet of Things environments face significant challenges, including high latency, constrained throughput, and unpredictable network conditions. These limitations hinder real‐time responsiveness and efficient resource utilization, particularly in mission‐critical Internet of Things applications. Moreover, ensuring robust data security under such dynamic and latency‐sensitive scenarios is vital, as unsecured task execution and data exchange can lead to severe vulnerabilities. Therefore, optimizing both performance and security in low‐latency conditions remains a crucial requirement for reliable and scalable fog‐cloud computing infrastructures. Hence, this paper proposes a novel task scheduling framework such as Type−2 Fuzzy Multi‐Agent Reinforcement Learning with Cauchy Mutation War Optimization algorithm within a secure Software‐Defined Network architecture. The proposed model improves decision‐making under uncertainty by analyzing the task scheduling process and optimizes resource allocation to strengthen network security against malicious attacks. The Cauchy mutation incorporates with war competition to explore the effectiveness of improving security and validates the control of dynamic functionality by estimating the routing process. The experimental results are analyzed by varied metrics and two benchmark datasets such as NASA Ames Research Center iPSC/860 and High Performance Computing Center North that demonstrate the superiority of the proposed model over state‐of‐the‐art techniques. The results revealed that the latency is minimized for the proposed model by 43% and maximized throughput by 82.3% with better quality of service at 69%, and enhanced network security by 78.2%. Also, the proposed method diminishes response time by 37 s and optimizes resource utilization to conform to the robustness and efficiency in real‐time Internet of Things applications. Thus, the results validate the capability of the proposed framework by improving offloading strategies with secure and scalable task scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适涵山完成签到,获得积分10
2秒前
合不着完成签到 ,获得积分10
14秒前
沿途有你完成签到 ,获得积分10
16秒前
Karl完成签到,获得积分10
31秒前
YifanWang应助科研通管家采纳,获得30
55秒前
naczx完成签到,获得积分0
1分钟前
田様应助DY采纳,获得10
1分钟前
Bugs完成签到,获得积分10
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
宇文雨文完成签到 ,获得积分10
2分钟前
3分钟前
DY发布了新的文献求助10
3分钟前
Owen应助DY采纳,获得10
3分钟前
mashibeo应助李李采纳,获得10
3分钟前
new1完成签到,获得积分10
4分钟前
小山己几完成签到,获得积分10
4分钟前
silence完成签到 ,获得积分10
4分钟前
鱼鱼鱼鱼完成签到 ,获得积分10
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
牛黄完成签到 ,获得积分10
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
蔡勇强完成签到 ,获得积分10
5分钟前
5分钟前
superbada完成签到,获得积分10
5分钟前
敏敏9813发布了新的文献求助10
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
5分钟前
沉静香氛完成签到 ,获得积分10
5分钟前
houxy完成签到 ,获得积分10
5分钟前
superbada发布了新的文献求助10
5分钟前
李大胖胖完成签到 ,获得积分10
5分钟前
小杭76完成签到 ,获得积分0
5分钟前
6分钟前
DY发布了新的文献求助10
6分钟前
yi完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459622
求助须知:如何正确求助?哪些是违规求助? 4565104
关于积分的说明 14297533
捐赠科研通 4490428
什么是DOI,文献DOI怎么找? 2459704
邀请新用户注册赠送积分活动 1449289
关于科研通互助平台的介绍 1424988