Language models reveal a complex sequence basis for adaptive convergent evolution of protein functions

收敛演化 趋同(经济学) 相似性(几何) 计算机科学 计算生物学 生物 蛋白质测序 功能(生物学) 序列(生物学) 肽序列 进化生物学 人工智能 基因 系统发育学 遗传学 图像(数学) 经济 经济增长
作者
Zhenqiu Cao,Hongjiu Zhang,Zhengting Zou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (39)
标识
DOI:10.1073/pnas.2418254122
摘要

Convergent evolution, or convergence, refers to repeated, independent emergences of the same trait in two or more lineages of species during evolution, often indicating functional adaptation to specific environmental factors. Many computational methods have been proposed to investigate the genetic basis for organismal functional convergence, as an important way to decode the complex sequence–function map of proteins. These methods mostly focus on the convergence of amino acid states at the level of individual sites in functionally related proteins. However, even without site-level sequence similarity, protein function similarity may also stem from convergence of high-order protein features, which cannot be captured by the conventional methods. To fill this gap, we first derived numerical embeddings from protein sequences by pretrained protein language models (PLM). In four previously reported cases, we found that functionally convergent proteins have similar embeddings despite no site-level convergence, indicating that PLM embeddings can reflect convergence of high-order protein features. We then designed a pipeline to detect Adaptive Convergence by Embedding of Protein (ACEP). ACEP tests were significant on known and additional candidate genes with putative adaptive convergence like echolocation and crassulacean acid metabolism. Genome-wide application showed that the ACEP framework can effectively enrich such candidates. Relations between convergences of PLM embeddings and specific protein physicochemical features were further examined. In conclusion, PLM embeddings can indicate adaptive convergence of high-order protein features beyond site identities, demonstrating the power of deep learning tools for investigating the complex mapping between molecular sequences and functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飘逸忆梅完成签到,获得积分10
1秒前
1秒前
打打应助Chen采纳,获得10
2秒前
2秒前
九米发布了新的文献求助10
3秒前
wang完成签到,获得积分10
3秒前
dada完成签到,获得积分20
4秒前
飘逸的飞绿完成签到,获得积分10
4秒前
机灵棉花糖关注了科研通微信公众号
5秒前
5秒前
nicoco完成签到,获得积分10
6秒前
自由寻冬完成签到 ,获得积分10
7秒前
好大一个赣宝完成签到,获得积分10
7秒前
dada发布了新的文献求助10
9秒前
高金龙发布了新的文献求助10
9秒前
bkagyin应助zhukun采纳,获得10
9秒前
丘比特应助de铭采纳,获得10
11秒前
YifanWang应助cyu采纳,获得10
11秒前
11秒前
Jonathan完成签到,获得积分10
17秒前
粗暴的念寒完成签到,获得积分10
18秒前
LZNUDT发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
顺利皮蛋应助懦弱的寄灵采纳,获得10
21秒前
小沈发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
打打应助九米采纳,获得10
24秒前
Chen完成签到,获得积分10
24秒前
来路遥迢发布了新的文献求助10
24秒前
26秒前
Chen发布了新的文献求助10
26秒前
linpeng发布了新的文献求助10
27秒前
温以凡完成签到,获得积分10
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4722352
求助须知:如何正确求助?哪些是违规求助? 4081828
关于积分的说明 12622898
捐赠科研通 3787377
什么是DOI,文献DOI怎么找? 2091656
邀请新用户注册赠送积分活动 1117701
科研通“疑难数据库(出版商)”最低求助积分说明 994538