Language models reveal a complex sequence basis for adaptive convergent evolution of protein functions

收敛演化 趋同(经济学) 相似性(几何) 计算机科学 计算生物学 生物 蛋白质测序 功能(生物学) 序列(生物学) 肽序列 进化生物学 人工智能 基因 系统发育学 遗传学 经济 图像(数学) 经济增长
作者
Zhenqiu Cao,Hongjiu Zhang,Zhengting Zou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (39)
标识
DOI:10.1073/pnas.2418254122
摘要

Convergent evolution, or convergence, refers to repeated, independent emergences of the same trait in two or more lineages of species during evolution, often indicating functional adaptation to specific environmental factors. Many computational methods have been proposed to investigate the genetic basis for organismal functional convergence, as an important way to decode the complex sequence–function map of proteins. These methods mostly focus on the convergence of amino acid states at the level of individual sites in functionally related proteins. However, even without site-level sequence similarity, protein function similarity may also stem from convergence of high-order protein features, which cannot be captured by the conventional methods. To fill this gap, we first derived numerical embeddings from protein sequences by pretrained protein language models (PLM). In four previously reported cases, we found that functionally convergent proteins have similar embeddings despite no site-level convergence, indicating that PLM embeddings can reflect convergence of high-order protein features. We then designed a pipeline to detect Adaptive Convergence by Embedding of Protein (ACEP). ACEP tests were significant on known and additional candidate genes with putative adaptive convergence like echolocation and crassulacean acid metabolism. Genome-wide application showed that the ACEP framework can effectively enrich such candidates. Relations between convergences of PLM embeddings and specific protein physicochemical features were further examined. In conclusion, PLM embeddings can indicate adaptive convergence of high-order protein features beyond site identities, demonstrating the power of deep learning tools for investigating the complex mapping between molecular sequences and functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scgfren完成签到,获得积分10
刚刚
刚刚
柯柯发布了新的文献求助10
1秒前
2秒前
玉绳十六完成签到,获得积分10
2秒前
雨落尘飞发布了新的文献求助10
2秒前
qing完成签到,获得积分10
2秒前
2秒前
2秒前
QDU应助小牛牛采纳,获得10
3秒前
E10100完成签到,获得积分10
3秒前
骨关节炎完成签到 ,获得积分10
3秒前
JamesPei应助meng采纳,获得10
3秒前
Reine发布了新的文献求助10
3秒前
霸气的太清完成签到,获得积分20
3秒前
oreki发布了新的文献求助10
4秒前
上官若男应助悦耳的谷雪采纳,获得10
4秒前
拼搏的明轩完成签到,获得积分10
4秒前
宇宙法完成签到,获得积分10
5秒前
魔法世界完成签到,获得积分20
5秒前
李佳烨发布了新的文献求助10
5秒前
5秒前
arizaki7发布了新的文献求助10
5秒前
5秒前
我裂开了发布了新的文献求助10
5秒前
Komorebi完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
快乐保温杯完成签到,获得积分10
7秒前
8秒前
badercao完成签到,获得积分10
8秒前
FashionBoy应助chenchao采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
Simon_Zhang发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260929
求助须知:如何正确求助?哪些是违规求助? 4422163
关于积分的说明 13765353
捐赠科研通 4296568
什么是DOI,文献DOI怎么找? 2357408
邀请新用户注册赠送积分活动 1353709
关于科研通互助平台的介绍 1314957