亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of ammonia solution on the electrochemical properties of magnesium manganese oxide material for aqueous zinc-ion batteries

材料科学 电化学 水溶液 无机化学 硝酸锌 氧化锰 离子 冶金 电极 化学 有机化学 物理化学
作者
Wasim Akram Syed,Ashok Kumar Kakarla,Hari Bandi,R. Shanthappa,Jae Su Yu
出处
期刊:Journal of Magnesium and Alloys [Elsevier]
卷期号:13 (7): 3271-3286
标识
DOI:10.1016/j.jma.2025.06.010
摘要

Aqueous zinc (Zn)-ion batteries (AZIBs) have gained significant interest in energy storage due to several unique advantages. Utilizing water-based electrolytes enhances environmental sustainability, while the abundance and affordability of Zn offer economic benefits. Manganese (Mn)-based materials, commonly used as cathodes in these batteries, provide high theoretical capacity, high electrical conductivity, and good structural stability. However, these materials suffer from capacity degradation over repeated cycles due to structural collapse and limited conductivity. To address this problem, we synthesized a magnesium (Mg)- and Mn-based composite, Mg2+-Mn3O4, using the hydrothermal method with an optimized amount of ammonium hydroxide (NH4OH) solution. This approach effectively stabilizes the structure during cycling, enhancing both capacity retention and conductivity. The Zn2+/H+ intercalation/deintercalation process was confirmed by experimental results and ex-situ X-ray diffraction analysis, which demonstrates that Mg2+, along with optimized NH4OH amount, prevents structural collapse and improves conductivity. Under optimal process conditions, the composite electrode (Mg2+-Mn3O4–8 ml) achieved a capacity of 173.58 mA h g–1 at 0.5 A g–1, with excellent rate performance of 71.39 mA h g–1 at 10 A g–1. Remarkably, even at 5 A g–1, the electrode maintained a capacity of 86.87 mA h g–1 over 2100 cycles, underscoring the role of Mg2+ and NH4OH in enhancing the reversible insertion/extraction stability of Zn2+ in Mn-based layered materials. This study presents a novel strategy for metal-ion incorporation in Mn-based AZIBs, offering insights into the optimization of cathode materials and advancing research on associated storage mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
21秒前
33秒前
Lan完成签到 ,获得积分10
36秒前
田様应助oyl采纳,获得10
44秒前
49秒前
ZgnomeshghT发布了新的文献求助28
56秒前
nkuwangkai完成签到,获得积分10
1分钟前
重庆森林发布了新的文献求助60
1分钟前
1分钟前
1分钟前
情怀应助ZgnomeshghT采纳,获得10
1分钟前
1分钟前
orixero应助Ahan采纳,获得10
1分钟前
1分钟前
1分钟前
重庆森林完成签到,获得积分10
1分钟前
1分钟前
Ahan发布了新的文献求助10
1分钟前
香蕉觅云应助bji采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
星火发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
ZgnomeshghT发布了新的文献求助10
2分钟前
星火完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
章鱼完成签到,获得积分10
3分钟前
3分钟前
bji发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606575
求助须知:如何正确求助?哪些是违规求助? 4691070
关于积分的说明 14866893
捐赠科研通 4708433
什么是DOI,文献DOI怎么找? 2542956
邀请新用户注册赠送积分活动 1508222
关于科研通互助平台的介绍 1472280