Identifying ADHD boys by very-low frequency prefrontal fNIRS fluctuations during a rhythmic mental arithmetic task

线性判别分析 人工智能 计算机科学 支持向量机 二元分类 注意缺陷多动障碍 机器学习 判别式 模式识别(心理学) 心理学 临床心理学
作者
Sergio Ortuño-Miró,Sergio Molina‐Rodríguez,Carlos Belmonte,Joaquín Ibáñez-Ballesteros
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (3): 036018-036018 被引量:10
标识
DOI:10.1088/1741-2552/acad2b
摘要

Objective.Computer-aided diagnosis of attention-deficit/hyperactivity disorder (ADHD) aims to provide useful adjunctive indicators to support more accurate and cost-effective clinical decisions. Deep- and machine-learning (ML) techniques are increasingly used to identify neuroimaging-based features for objective assessment of ADHD. Despite promising results in diagnostic prediction, substantial barriers still hamper the translation of the research into daily clinic. Few studies have focused on functional near-infrared spectroscopy (fNIRS) data to discriminate ADHD condition at the individual level. This work aims to develop an fNIRS-based methodological approach for effective identification of ADHD boys via technically feasible and explainable methods.Approach.fNIRS signals recorded from superficial and deep tissue layers of the forehead were collected from 15 clinically referred ADHD boys (average age 11.9 years) and 15 non-ADHD controls during the execution of a rhythmic mental arithmetic task. Synchronization measures in the time-frequency plane were computed to find frequency-specific oscillatory patterns maximally representative of the ADHD or control group. Time series distance-based features were fed into four popular ML linear models (support vector machine, logistic regression (LR), discriminant analysis and naïve Bayes) for binary classification. A 'sequential forward floating selection' wrapper algorithm was adapted to pick out the most discriminative features. Classifiers performance was evaluated through five-fold and leave-one-out cross-validation (CV) and statistical significance by non-parametric resampling procedures.Main results.LR and linear discriminant analysis achieved accuracy, sensitivity and specificity scores of near 100% (p<.001) for both CV schemes when trained with only three key wrapper-selected features, arising from surface and deep oscillatory components of very low frequency.Significance.We provide preliminary evidence that very-low frequency fNIRS fluctuations induced/modulated by a rhythmic mental task accurately differentiate ADHD boys from non-ADHD controls, outperforming other similar studies. The proposed approach holds promise for finding functional biomarkers reliable and interpretable enough to inform clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
gln完成签到 ,获得积分10
17秒前
李健的小迷弟应助momo采纳,获得10
29秒前
外向可冥完成签到,获得积分10
31秒前
41秒前
繁星完成签到 ,获得积分10
44秒前
文艺水风完成签到 ,获得积分10
51秒前
胖胖橘完成签到 ,获得积分10
53秒前
刻苦的新烟完成签到 ,获得积分0
54秒前
cwanglh完成签到 ,获得积分10
54秒前
范ER完成签到 ,获得积分10
55秒前
athena完成签到 ,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
tbdxby完成签到 ,获得积分0
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
qzh006完成签到,获得积分10
1分钟前
灵巧的以亦完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
高贵的问萍完成签到,获得积分10
1分钟前
hml123完成签到,获得积分10
1分钟前
su完成签到 ,获得积分0
1分钟前
Kelsey完成签到 ,获得积分10
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
carl完成签到 ,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
166完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
林好人完成签到 ,获得积分10
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
Michael完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
斯文的傲珊完成签到,获得积分10
2分钟前
李木禾完成签到 ,获得积分10
2分钟前
kuyi完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595774
关于积分的说明 14449708
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550