Dataset dependency of low-density lipoprotein-cholesterol estimation by machine learning

人工智能 机器学习 试验装置 藤田级数 估计 计算机科学 工程类 地理 气象学 系统工程
作者
Hidekazu Ishida,Hiroki Nagasawa,Yasuko Yamamoto,H. Doi,M. Saito,Yuya Ishihara,Takashi Fujita,Mariko Ishida,Yohei Kato,R. Kikuchi,Hidetoshi Matsunami,Masao Takemura,Hiroyasu Ito,Kuniaki Saito
出处
期刊:Annals of Clinical Biochemistry [SAGE Publishing]
卷期号:60 (6): 396-405 被引量:2
标识
DOI:10.1177/00045632231180408
摘要

Objectives We evaluated the applicability of a machine learning–based low-density lipoprotein-cholesterol (LDL-C) estimation method and the influence of the characteristics of the training datasets. Methods Three training datasets were chosen from training datasets: health check-up participants at the Resource Center for Health Science ( N = 2664), clinical patients at Gifu University Hospital ( N = 7409), and clinical patients at Fujita Health University Hospital ( N = 14,842). Nine different machine learning models were constructed through hyperparameter tuning and 10-fold cross-validation. Another test dataset of another 3711 clinical patients at Fujita Health University Hospital was selected as the test set used for comparing and validating the model against the Friedewald formula and the Martin method. Results The coefficients of determination of the models trained on the health check-up dataset produced coefficients of determination that were equal to or inferior to those of the Martin method. In contrast, the coefficients of determination of several models trained on clinical patients exceeded those of the Martin method. The means of the differences and the convergences to the direct method were higher for the models trained on the clinical patients' dataset than for those trained on the health check-up participants' dataset. The models trained on the latter dataset tended to overestimate the 2019 ESC/EAS Guideline for LDL-cholesterol classification. Conclusion Although machine learning models provide valuable method for LDL-C estimates, they should be trained on datasets with matched characteristics. The versatility of machine learning methods is another important consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助称心乐枫采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
yue完成签到,获得积分10
5秒前
5秒前
6秒前
panjunlu发布了新的文献求助10
6秒前
小绿茶完成签到,获得积分10
6秒前
6秒前
7秒前
李健应助max采纳,获得10
9秒前
gqqq发布了新的文献求助10
9秒前
sanwan完成签到,获得积分10
10秒前
月绛完成签到,获得积分10
10秒前
10秒前
江文发布了新的文献求助10
11秒前
lucyliu发布了新的文献求助10
11秒前
12秒前
方小发布了新的文献求助10
12秒前
SciGPT应助善良的路灯采纳,获得10
13秒前
yyang完成签到,获得积分10
13秒前
安yang发布了新的文献求助10
13秒前
14秒前
缓慢平蓝完成签到,获得积分10
15秒前
16秒前
迷人立轩发布了新的文献求助10
17秒前
勤恳曼寒完成签到,获得积分10
18秒前
Totoro发布了新的文献求助10
19秒前
天道酬勤发布了新的文献求助10
20秒前
qikkk应助gqqq采纳,获得10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606