Enabling Emergency Response to Arsenic Contamination: Simultaneous and Rapid Identification of Arsenic Speciation by a Machine Learning-Driven Fluorescent Sensor Array

作者
Dali Wei,Yunxiang Fan,Bohan Wu,Yuxuan Shen,Chunmeng Deng,Shen Qiu,Kun Zeng,Ligang Hu,Jingfu Liu,Zhugen Yang,Zhen Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (45): 24526-24537
标识
DOI:10.1021/acs.est.5c08536
摘要

The rapid identification of arsenic speciation is critical for assessing its toxicity and guiding emergency response during water contamination events, yet it remains a significant challenge for current analytical methods. Herein, a novel machine learning-driven fluorescent sensor array was designed for the differentiation of four arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV). Two Fe-based luminescent metal-organic frameworks (NH2-MIL-88(Fe) and OH-MIL-88(Fe)) were synthesized by functionalizing MIL-88 (Fe) with 2-amino-terephthalic acid and 2-hydroxy-terephthalic acid, respectively, both of which presented promising fluorescence behavior. Remarkably, varying arsenic species differentially regulated the fluorescence intensity of NH2-MIL-88(Fe) and OH-MIL-88(Fe), which was further analyzed by pattern recognition methods to develop a fluorescence sensor array for the rapid, simultaneous identification of four arsenic species and their mixtures. Furthermore, a machine learning algorithm was employed to integrate with the fluorescent sensor array to establish a stepwise prediction model to precisely identify and predict four arsenic species, which was successfully applied to actual water samples. Thus, our findings presented a robust, rapid, and intelligent platform for arsenic speciation, offering a powerful tool for water quality assessment and emergency response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Snoopy完成签到,获得积分10
1秒前
1秒前
AAA完成签到,获得积分10
1秒前
aaiirrii发布了新的文献求助10
1秒前
冷酷小海豚完成签到,获得积分10
2秒前
2秒前
DaMin32767发布了新的文献求助10
2秒前
123发布了新的文献求助10
4秒前
4秒前
4秒前
犹豫若云完成签到,获得积分10
4秒前
hxy发布了新的文献求助10
4秒前
汤汤完成签到,获得积分20
4秒前
4秒前
宋文祥完成签到,获得积分20
5秒前
wmls完成签到,获得积分10
5秒前
5秒前
123xol完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
马俣辰发布了新的文献求助10
7秒前
从容听南发布了新的文献求助20
7秒前
天空完成签到,获得积分10
8秒前
俏皮馒头完成签到 ,获得积分10
8秒前
林夕相心完成签到 ,获得积分10
8秒前
9秒前
wsnssbnhbx1发布了新的文献求助10
9秒前
10秒前
雪Q发布了新的文献求助10
10秒前
10秒前
Perry给fangzhang的求助进行了留言
10秒前
524974281完成签到,获得积分10
10秒前
優質塑膠发布了新的文献求助10
10秒前
科研通AI6应助白昼潜行采纳,获得10
10秒前
NexusExplorer应助冉冉采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286347
求助须知:如何正确求助?哪些是违规求助? 4439154
关于积分的说明 13820291
捐赠科研通 4320921
什么是DOI,文献DOI怎么找? 2371639
邀请新用户注册赠送积分活动 1367266
关于科研通互助平台的介绍 1330704