Abstract 4360925: A phenomapping-informed machine learning tool estimates individualized cardiometabolic effects from Tirzepatide and generalizes to a new population.

作者
Phyllis Thangaraj,Evangelos Oikonomou,Rohan Khera
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:152 (Suppl_3)
标识
DOI:10.1161/circ.152.suppl_3.4360925
摘要

Background: Tirzepatide induces weight loss (WL), but its precise use among those more likely to benefit from WL and experience cardiometabolic effects can enable more scalable deployment. Phenotypic heterogeneity within RCT participants may reveal markers of response. Hypothesis: A phenomapping-informed machine learning tool derived from a phase 3 Tirzepatide RCT can define its individualized treatment effect (ITE) on weight loss and components of metabolic syndrome (MS) and generalize to another RCT population. Methods: In SURPASS-1, we calculated pairwise participant Gower’s distance similarity using 46 pre-randomized baseline characteristics and fit linear mixed models of neighborhoods with phenotypic similarity to estimate the ITE of percent WL and MS components (BMI, waist circumference, SBP, DBP, fasting glucose (FBG), and HDL change). We then trained XGBoost models with Boruta SHAP to predict the ITE of Tirzepatide on WL and each of the MS components. Then, we evaluated whether the ITE tool deployed in SURMOUNT-2 identified those with high predicted WL with mean difference ITE across responder tertiles, and the HR of time to reach WL >15% faster of high vs low responders. We then correlated predicted ITE of WL and each of the MS components in both RCTs. Results: In SURPASS-1 (n=357, 166 (46%) female, 64 (18%) obese), median WL was -8.2 v. -1.3% (-13.6, -4.6 v. -3.1, 1.0, 25, 75% IQR, T v P.) Our tool, developed in SURPASS-1, showed a significant treatment-ITE interaction (p< .001) for WL, BMI, HDL, and waist circumference, (p=.002) for DBP, and (p=0.014) for FGB and significant stratification of responders by ITE tertile compared to true WL (one-way ANOVA .p<.001) The most informative features were female sex, hypertension, age, FBG, baseline weight, and SBP. The validation RCT, SURMOUNT-2, (n=936, 476 (51%) female, 936 (100%) obese), had a significant treatment-ITE interaction estimate (p=.045). High responders had a predicted mean difference of WL of 15.7% (13.5%-17.9%, p <.001), moderate, 13.0% (10.9%-15.0%, p<.001), and low, 11.2% (9.0%-13.0%, p<.001) (one-way ANOVA p <.001, Fig. A). High responders had a faster time to WL > 15% than low with a median 36 vs 72 weeks, HR 2.1 (1.6-2.7, Fig. B). There were significant correlations (p<.001) between the predicted ITE of WL and MS components (Table 1). Conclusions: A machine learning tool can predict individualized WL and pleiotropic cardiometabolic effects by Tirzepatide in a new patient population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助李静采纳,获得20
1秒前
桑晒包完成签到,获得积分10
1秒前
菲菲发布了新的文献求助10
2秒前
飞0802完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
zhangkx23完成签到,获得积分10
5秒前
6秒前
cym666666完成签到,获得积分10
7秒前
8秒前
欣喜小之完成签到,获得积分10
8秒前
fangplus完成签到,获得积分10
11秒前
13秒前
xzy998发布了新的文献求助30
13秒前
dagongren完成签到,获得积分10
13秒前
勤恳的糖豆完成签到,获得积分10
13秒前
14秒前
jun完成签到 ,获得积分10
15秒前
kc135完成签到,获得积分10
16秒前
美好寒梦完成签到,获得积分10
16秒前
脑壳疼完成签到,获得积分10
16秒前
蜡笔小z完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
nqterysc完成签到,获得积分10
18秒前
菲菲完成签到,获得积分10
20秒前
hsss完成签到,获得积分10
21秒前
c123完成签到 ,获得积分10
22秒前
li完成签到 ,获得积分10
22秒前
Q清风慕竹完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
小树苗完成签到 ,获得积分10
26秒前
yoyo完成签到 ,获得积分10
26秒前
活力奇异果完成签到,获得积分10
27秒前
27秒前
ruqinmq完成签到,获得积分10
28秒前
28秒前
霸气的草莓完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
叶枫寒完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5816839
求助须知:如何正确求助?哪些是违规求助? 5941966
关于积分的说明 15544890
捐赠科研通 4938962
什么是DOI,文献DOI怎么找? 2660282
邀请新用户注册赠送积分活动 1606485
关于科研通互助平台的介绍 1561353