Abstract 4360925: A phenomapping-informed machine learning tool estimates individualized cardiometabolic effects from Tirzepatide and generalizes to a new population.

作者
Phyllis Thangaraj,Evangelos Oikonomou,Rohan Khera
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:152 (Suppl_3)
标识
DOI:10.1161/circ.152.suppl_3.4360925
摘要

Background: Tirzepatide induces weight loss (WL), but its precise use among those more likely to benefit from WL and experience cardiometabolic effects can enable more scalable deployment. Phenotypic heterogeneity within RCT participants may reveal markers of response. Hypothesis: A phenomapping-informed machine learning tool derived from a phase 3 Tirzepatide RCT can define its individualized treatment effect (ITE) on weight loss and components of metabolic syndrome (MS) and generalize to another RCT population. Methods: In SURPASS-1, we calculated pairwise participant Gower’s distance similarity using 46 pre-randomized baseline characteristics and fit linear mixed models of neighborhoods with phenotypic similarity to estimate the ITE of percent WL and MS components (BMI, waist circumference, SBP, DBP, fasting glucose (FBG), and HDL change). We then trained XGBoost models with Boruta SHAP to predict the ITE of Tirzepatide on WL and each of the MS components. Then, we evaluated whether the ITE tool deployed in SURMOUNT-2 identified those with high predicted WL with mean difference ITE across responder tertiles, and the HR of time to reach WL >15% faster of high vs low responders. We then correlated predicted ITE of WL and each of the MS components in both RCTs. Results: In SURPASS-1 (n=357, 166 (46%) female, 64 (18%) obese), median WL was -8.2 v. -1.3% (-13.6, -4.6 v. -3.1, 1.0, 25, 75% IQR, T v P.) Our tool, developed in SURPASS-1, showed a significant treatment-ITE interaction (p< .001) for WL, BMI, HDL, and waist circumference, (p=.002) for DBP, and (p=0.014) for FGB and significant stratification of responders by ITE tertile compared to true WL (one-way ANOVA .p<.001) The most informative features were female sex, hypertension, age, FBG, baseline weight, and SBP. The validation RCT, SURMOUNT-2, (n=936, 476 (51%) female, 936 (100%) obese), had a significant treatment-ITE interaction estimate (p=.045). High responders had a predicted mean difference of WL of 15.7% (13.5%-17.9%, p <.001), moderate, 13.0% (10.9%-15.0%, p<.001), and low, 11.2% (9.0%-13.0%, p<.001) (one-way ANOVA p <.001, Fig. A). High responders had a faster time to WL > 15% than low with a median 36 vs 72 weeks, HR 2.1 (1.6-2.7, Fig. B). There were significant correlations (p<.001) between the predicted ITE of WL and MS components (Table 1). Conclusions: A machine learning tool can predict individualized WL and pleiotropic cardiometabolic effects by Tirzepatide in a new patient population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asd_1发布了新的文献求助10
刚刚
刚刚
苯醌完成签到,获得积分10
刚刚
1秒前
墨痕完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
oi完成签到,获得积分10
4秒前
SN发布了新的文献求助10
4秒前
年把月拥有完成签到,获得积分10
5秒前
6秒前
6秒前
乐乐应助吉良吉影采纳,获得10
6秒前
咯噔完成签到,获得积分10
6秒前
7秒前
8秒前
英吉利25发布了新的文献求助30
8秒前
haohaha完成签到,获得积分10
8秒前
9秒前
糖糖糖发布了新的文献求助10
11秒前
略略略发布了新的文献求助10
11秒前
12秒前
琉璃完成签到,获得积分10
12秒前
斯文败类应助陶醉的凝丝采纳,获得30
13秒前
如意手链完成签到,获得积分10
13秒前
15秒前
ff999完成签到,获得积分10
15秒前
dwd关注了科研通微信公众号
15秒前
由清涟完成签到,获得积分10
15秒前
15秒前
时间完成签到,获得积分20
16秒前
17秒前
温彬彬Mint_完成签到,获得积分10
18秒前
18秒前
婷儿发布了新的文献求助10
18秒前
我在高维宇宙完成签到,获得积分10
18秒前
吉良吉影发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
yang发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646438
求助须知:如何正确求助?哪些是违规求助? 4771331
关于积分的说明 15034955
捐赠科研通 4805240
什么是DOI,文献DOI怎么找? 2569540
邀请新用户注册赠送积分活动 1526547
关于科研通互助平台的介绍 1485858