Digital twin-driven feature enhancement generative adversarial network for rolling bearings fault diagnosis

作者
Zhongding Fan,Xianzeng Liu,Zheng Cao,Hang Wang,Yuanyuan Zhou,Yongbin Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251385982
摘要

The difficulty of collecting fault samples of bearings under stable operation results in imbalanced data and considerably weakened capability of the deep learning-based intelligent fault diagnosis methods. Thus, a novel digital twin (DT)-driven feature enhancement generative adversarial network (DFGAN) was proposed in this study to augment the imbalanced multisensor data and improve diagnostic accuracy. First, a generic DT model with multiple degrees of freedom was developed to obtain simulated vibration data containing fault features. Subsequently, DFGAN was adopted to translate simulated data into measured data and generate synthetic samples with distributions similar to those of the measured samples. Specifically, the DFGAN incorporated an improved squeeze-and-excitation U-Net as the generator and integrated a spectral correlation loss to enhance the quality of synthetic samples. Finally, the imbalanced multisensor data were augmented with the synthetic samples, and bearing fault diagnosis was achieved by a multibranch convolutional neural network. Furthermore, the proposed method was verified to diagnose two rolling bearing datasets. The results reveal that the proposed method effectively augmented imbalanced data and significantly enhanced diagnostic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助GU采纳,获得10
刚刚
NoMi完成签到,获得积分10
刚刚
1秒前
苦艾酒发布了新的文献求助100
2秒前
小巧奇异果完成签到,获得积分20
3秒前
自觉静竹发布了新的文献求助10
3秒前
细心采蓝完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
认真盼夏完成签到,获得积分10
7秒前
辰宸发布了新的文献求助10
8秒前
流云完成签到,获得积分10
8秒前
猛猛发文章完成签到 ,获得积分10
9秒前
清梦完成签到 ,获得积分10
10秒前
10秒前
申鑫浩完成签到,获得积分10
11秒前
无奈的惜蕊完成签到,获得积分10
11秒前
12秒前
扶南完成签到,获得积分10
12秒前
黄则已完成签到,获得积分20
16秒前
wanci应助limay采纳,获得10
16秒前
17秒前
复杂曼梅发布了新的文献求助10
18秒前
18秒前
19秒前
Owen应助沙子采纳,获得10
19秒前
Nnn发布了新的文献求助10
19秒前
19秒前
20秒前
Akim应助寒冰寒冰采纳,获得10
21秒前
柠檬小麦青汁完成签到,获得积分10
21秒前
依旧完成签到,获得积分10
21秒前
科研牛马完成签到,获得积分10
22秒前
22秒前
聪明胡萝卜完成签到,获得积分10
22秒前
chengxiping发布了新的文献求助10
23秒前
坦率灵槐发布了新的文献求助10
23秒前
守夜人发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445