材料科学
阳极
电解质
电池(电)
离子电导率
复合数
储能
图层(电子)
电导率
原位
相(物质)
化学工程
能量密度
复合材料
电化学
电化学窗口
离子键合
锂离子电池的纳米结构
电阻率和电导率
基质(化学分析)
电流密度
电极
纳米技术
锂离子电池
阴极
作者
Zihui Liu,Wenting Feng,Jianhang Yang,Xinru Wei,Yunbo Zhang,Chenyu Ma,Yiming Sun,Han Wang,Haolin Wu,Xin Qin,Guicun Li
标识
DOI:10.1002/adfm.202526799
摘要
ABSTRACT The escalating demand for high‐energy‐density storage has intensified research on Li‐Cl 2 batteries, which exhibit ultrahigh energy density but suffer from rapid failure due to the poor ionic conductivity and mechanical fragility of naturally formed LiCl interphases on Li metal. Here, we design an organic–inorganic hybrid protective layer (Li 3 Sb/LiF/PVDF, denoted as LSLP@Li) via in situ interfacial engineering. This designed layer effectively isolates the Li anode from corrosive SOCl 2 electrolyte and suppresses parasitic reactions. The synergistic Li 3 Sb/LiF phase ensures high ionic conductivity and guides uniform Li deposition, while the flexible PVDF matrix accommodates cycling‐induced volumetric strain. As a result, the LSLP@Li anode maintains structural integrity for over 48 h in corrosive electrolyte (<2 h for bare Li), enabling Li‐Cl 2 batteries to maintain over 400 cycles at 1000 mA g −1 . The study advances the understanding of naturally formed LiCl layer on SOCl 2 ‐based battery and provide valuable strategy to achieve the interfacial stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI