Declining rates of species description call for improved taxonomic strategies: Insights from a megadiverse insect order

生物 生物多样性 分类单元 分类学(生物学) 分类等级 生态学 全球生物多样性 系统发育树 经济短缺 进化生物学 昆虫 订单(交换) 系统发育学 昆虫学 生物地理学 基线(sea) 生命之树(生物学) 数据科学
作者
PIERFILIPPO CERRETTI,Dario Nania,Moreno Di Marco,Rudolf Meier,Aleida Ascenzi,Neal Evenhuis,Thomas Pape
出处
期刊:Systematic Entomology [Wiley]
标识
DOI:10.1111/syen.70019
摘要

Abstract Classifying organisms is fundamental in biodiversity research, but time‐consuming. Although technological advances in species discovery and phylogenetic analysis have marked the early 21st century, we are far from achieving a comprehensive inventory of species diversity, as many taxa remain largely undocumented. Discovering or classifying lineages without formally describing and naming them leaves biodiversity knowledge incomplete and non‐interoperable, as such units cannot be consistently referenced or validated across datasets and disciplines. Accelerating formal species description therefore requires a strategic, data‐driven plan to maximize efforts with finite resources. Using a uniquely complete dataset, we explored past, current and projected trends in the description of the megadiverse yet largely understudied true flies (Insecta: Diptera). We found evidence of a persistent global decline in Diptera species descriptions since the late 1990s. At current rates, it will take centuries to describe even the well‐studied groups, which represent only a fraction of Diptera diversity. We argue that many other insect orders are in the same conditions, given the misalignment of research priorities, under‐utilization of emerging tools, the overall shortage of taxonomic expertise and the limited availability of curated data for neglected groups. To address these challenges, we propose five strategic priorities for a renewed, data‐integrative taxonomy aimed at accelerating the formal description of species, with potential applications across much of the remaining undocumented animal diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅呀呀呀发布了新的文献求助10
1秒前
zzzdx发布了新的文献求助50
1秒前
欣欣子发布了新的文献求助10
1秒前
脑洞疼应助勤恳白秋采纳,获得10
2秒前
2秒前
3秒前
所所应助亦玉采纳,获得10
4秒前
傅剑寒发布了新的文献求助10
4秒前
传奇3应助ogotho采纳,获得10
5秒前
6秒前
成就映秋发布了新的文献求助10
7秒前
7秒前
淡定自中发布了新的文献求助10
7秒前
善学以致用应助刘老板采纳,获得10
7秒前
7秒前
深情安青应助lvjiahui采纳,获得30
8秒前
兴奋长颈鹿完成签到,获得积分10
9秒前
luckymeng发布了新的文献求助10
9秒前
orixero应助暴躁的酸奶采纳,获得10
10秒前
木灵完成签到,获得积分10
10秒前
顾顾完成签到,获得积分20
10秒前
小粘豆包完成签到,获得积分10
10秒前
11秒前
17853723535发布了新的文献求助10
12秒前
12秒前
洁净问儿发布了新的文献求助10
12秒前
13秒前
13秒前
乐乐应助成就梦松采纳,获得10
13秒前
bless发布了新的文献求助10
13秒前
默顿的笔记本完成签到,获得积分10
14秒前
14秒前
15秒前
小蘑菇应助zzzdx采纳,获得10
15秒前
丘比特应助害怕的惜文采纳,获得10
17秒前
荀之玉完成签到,获得积分10
17秒前
何时发布了新的文献求助10
17秒前
ovo发布了新的文献求助10
17秒前
Allisu完成签到,获得积分10
17秒前
复杂易形完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354701
求助须知:如何正确求助?哪些是违规求助? 4486753
关于积分的说明 13967752
捐赠科研通 4387338
什么是DOI,文献DOI怎么找? 2410339
邀请新用户注册赠送积分活动 1402728
关于科研通互助平台的介绍 1376552