材料科学
化学物理
原子轨道
离域电子
反键分子轨道
退化(生物学)
费米能级
锂(药物)
电化学
石墨烯
亚稳态
硫化物
分子轨道
电子转移
轨道重叠
分子物理学
化学键
八面体
电极
凝聚态物理
电子
联轴节(管道)
原子物理学
金属
非键轨道
原子单位
债券定单
结构稳定性
密度泛函理论
双功能
电化学电位
作者
Zhang Jing,Peiqi Shen,Yuchun Liu,Tianchen Wei,Xingwu Zhai,Baichuan Zhu,Jianrong Zeng,Kun Xu,Min Zhou
标识
DOI:10.1002/adma.202517957
摘要
Abstract Lithium carbonate, the primary discharge product in Li–CO 2 batteries with high thermodynamic stability and a wide band gap, leads to significant electrochemical inertness, limiting efficiency and cycle life. The strongly delocalized p z orbital at a lower‐energy HOMO level in Li 2 CO 3 causes weak coupling with the O‐p z orbitals, increasing decomposition resistance owing to d‐orbital degeneracy in high‐local‐symmetry catalysts. This study introduces metastable tetragonal‐pyramidal nickel sulfide (tp‐NiS) with low‐symmetry NiS 5 coordination, breaking d‐orbital degeneracy and bringing d z 2 , d xz , and d yz orbitals closer to the Fermi level. Enhanced orbital overlap with Li 2 CO 3 O‐p z orbitals facilitates robust Ni–O bond formation. In situ spectroscopy confirms reversible Ni–O bond formation during cycling, ensuring electron transfer and complete Li 2 CO 3 decomposition. Conversely, weak interfacial interactions in octahedral NiS with highly symmetric local coordination only allow decomposition‐resistant Li 2 CO 3 and interface passivation. Consequently, tp‐NiS exhibits superior electrochemical performance, with the best reported reversibility and stability, a charge potential below 4.0 V, and 92.03% capacity retention after 1800 h. This metal redox‐driven mechanism establishes a reversible geometric conversion pathway, emphasizing the critical role of symmetry‐engineered Ni–O interactions in bifunctional catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI