A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging

电池(电) 健康状况 粒子群优化 计算机科学 恒流 超参数 电压 工程类 人工智能 功率(物理) 机器学习 电气工程 物理 量子力学
作者
Junxiong Chen,Yuanjiang Hu,Qiao Zhu,Haroon Rashid,Hongkun Li
出处
期刊:Energy [Elsevier]
卷期号:282: 128782-128782 被引量:27
标识
DOI:10.1016/j.energy.2023.128782
摘要

Efficient battery health indicator (HI) extraction and accurate estimation method are two important issues in the study of battery state of health (SOH) estimation. Although machine learning-based methods have been widely applied to the battery SOH estimation in recent years, the battery HI extraction in most studies is too tedious, the estimation method lacks pertinence, and the aging pattern of the battery aging dataset is simple. To solve the above problems, this paper proposes a novel battery HI based on the charging duration of the equal voltage intervals in the constant current charging process, which can effectively characterize the battery aging characteristics by only 10 continuous charging duration counts directly from the battery management system. Considering the difficulty of collecting battery aging data and the high dimensionality of the extracted HI, the least squares support vector regression (LSSVR), which is suitable for small samples and high dimensional data, is used to build the SOH mapping model and the optimal hyperparameters are found with the help of particle swarm optimization (PSO). The satisfactory SOH estimation accuracy of the proposed method is validated on a public LiFePO4 battery aging dataset containing different temperatures, discharge rates, discharge depths and cycle intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvzhechen发布了新的文献求助10
1秒前
2秒前
2秒前
墩墩完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
风雨1210发布了新的文献求助10
6秒前
隐形曼青应助多开心奶粉采纳,获得10
6秒前
8秒前
章访曼完成签到 ,获得积分10
8秒前
bless完成签到 ,获得积分10
10秒前
Orange应助好运6连采纳,获得10
10秒前
伍子胥完成签到,获得积分10
11秒前
xgg发布了新的文献求助10
11秒前
深情安青应助义气的夏寒采纳,获得10
12秒前
12秒前
12秒前
浮游应助无奈敏采纳,获得10
13秒前
xiaoshulin完成签到,获得积分10
13秒前
13秒前
CipherSage应助Eureka采纳,获得10
14秒前
燕子完成签到,获得积分10
14秒前
15秒前
无极微光应助qw采纳,获得20
16秒前
花样年华完成签到,获得积分10
16秒前
17秒前
zhangzhangZZZ发布了新的文献求助10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
QAQ发布了新的文献求助10
19秒前
箱箱完成签到,获得积分10
20秒前
20秒前
w倾应助000采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206