Learning Orthogonal Prototypes for Generalized Few-Shot Semantic Segmentation

计算机科学 人工智能 班级(哲学) 基础(拓扑) 帕斯卡(单位) 像素 分割 集合(抽象数据类型) 正投影 正交性 知识库 模式识别(心理学) 机器学习 数学 数学分析 程序设计语言 几何学
作者
Sun-Ao Liu,Yiheng Zhang,Zhaofan Qiu,Hongtao Xie,Yongdong Zhang,Ting Yao
标识
DOI:10.1109/cvpr52729.2023.01089
摘要

Generalized few-shot semantic segmentation (GFSS) distinguishes pixels of base and novel classes from the background simultaneously, conditioning on sufficient data of base classes and a few examples from novel class. A typical GFSS approach has two training phases: base class learning and novel class updating. Nevertheless, such a stand-alone updating process often compromises the well-learnt features and results in performance drop on base classes. In this paper, we propose a new idea of leveraging Projection onto Orthogonal Prototypes (POP), which updates features to identify novel classes without compromising base classes. POP builds a set of orthogonal prototypes, each of which represents a semantic class, and makes the prediction for each class separately based on the features projected onto its prototype. Technically, POP first learns prototypes on base data, and then extends the prototype set to novel classes. The orthogonal constraint of POP encourages the orthogonality between the learnt prototypes and thus mitigates the influence on base class features when generalizing to novel prototypes. Moreover, we capitalize on the residual of feature projection as the background representation to dynamically fit semantic shifting (i.e., background no longer includes the pixels of novel classes in updating phase). Extensive experiments on two benchmarks demonstrate that our POP achieves superior performances on novel classes without sacrificing much accuracy on base classes. Notably, POP outperforms the state-of-the-art fine-tuning by 3.93% overall mIoU on PASCAL-5 i in 5-shot scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助ha采纳,获得10
刚刚
MX应助沐屿宸采纳,获得10
2秒前
2秒前
富贵完成签到,获得积分10
3秒前
风吹过草地完成签到,获得积分10
3秒前
舒适的虔发布了新的文献求助30
4秒前
dennisysz完成签到,获得积分10
5秒前
tdtk发布了新的文献求助10
5秒前
weiwenzuo发布了新的文献求助10
5秒前
丰富诗柳发布了新的文献求助10
6秒前
kaola发布了新的文献求助30
6秒前
箫涵完成签到,获得积分10
7秒前
wang完成签到,获得积分10
7秒前
7秒前
科目三应助Epiphany采纳,获得10
8秒前
朴素的口红关注了科研通微信公众号
8秒前
赵楠完成签到,获得积分20
8秒前
dyc238100完成签到,获得积分10
9秒前
9秒前
10秒前
球球了完成签到,获得积分20
11秒前
11秒前
胡攻科完成签到,获得积分10
11秒前
ha发布了新的文献求助10
11秒前
丘比特应助云雀恭弥采纳,获得10
12秒前
猫猫完成签到,获得积分10
12秒前
LW完成签到,获得积分10
12秒前
大个应助害羞乌冬面采纳,获得10
12秒前
13秒前
民大胡完成签到,获得积分10
14秒前
14秒前
快乐小子发布了新的文献求助10
14秒前
14秒前
蔬菜狗狗发布了新的文献求助10
14秒前
汉堡包应助富贵小粉猪采纳,获得10
15秒前
情怀应助nicelily采纳,获得10
15秒前
15秒前
丰富诗柳完成签到,获得积分10
15秒前
LHL完成签到,获得积分10
15秒前
领导范儿应助隐形白开水采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793765
求助须知:如何正确求助?哪些是违规求助? 3338643
关于积分的说明 10290816
捐赠科研通 3055026
什么是DOI,文献DOI怎么找? 1676315
邀请新用户注册赠送积分活动 804358
科研通“疑难数据库(出版商)”最低求助积分说明 761836