Individualized Prediction of Task Performance Decline Using Pre-Task Resting-State Functional Connectivity

任务(项目管理) 静息状态功能磁共振成像 任务分析 国家(计算机科学) 计算机科学 心理学 人工智能 神经科学 算法 工程类 系统工程
作者
Peng Qi,Xiaobing Zhang,Iοannis Kakkos,Kuijun Wu,Sujie Wang,Jingjia Yuan,Lingyun Gao,George K. Matsopoulos,Yu Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4971-4982 被引量:2
标识
DOI:10.1109/jbhi.2023.3307578
摘要

As a common complaint in contemporary society, mental fatigue is a key element in the deterioration of the daily activities known as time-on-task (TOT) effect, making the prediction of fatigue-related performance decline exceedingly important. However, conventional group-level brain-behavioral correlation analysis has the limitation of generalizability to unseen individuals and fatigue prediction at individual-level is challenging due to the significant differences between individuals both in task performance efficiency and brain activities. Here, we introduced a cross-validated data-driven analysis framework to explore, for the first time, the feasibility of utilizing pre-task idiosyncratic resting-state functional connectivity (FC) on the prediction of fatigue-related task performance degradation at individual level. Specifically, two behavioral metrics, namely ∆RT (between the most vigilant and fatigued states) and TOTslope over the course of the 15-min sustained attention task, were estimated among three sessions from 37 healthy subjects to represent fatigue-related individual behavioral impairment. Then, a connectome-based prediction model was employed on pre-task resting-state FC features, identifying the network-related differences that contributed to the prediction of performance deterioration. As expected, prominent populational TOT-related performance declines were revealed across three sessions accompanied with substantial inter-individual differences. More importantly, we achieved significantly high accuracies for individualized prediction of both TOT-related behavioral impairment metrics using pre-task neuroimaging features. Despite the distinct patterns between both behavioral metrics, the identified top FC features contributing to the individualized predictions were mainly resided within/between frontal, temporal and parietal areas. Overall, our results of individualized prediction framework extended conventional correlation/classification analysis and may represent a promising avenue for the development of applicable techniques that allow precaution of the TOT-related performance declines in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助斗转星移采纳,获得10
1秒前
Dream发布了新的文献求助10
2秒前
bing发布了新的文献求助10
2秒前
2秒前
噗咻关注了科研通微信公众号
3秒前
量子星尘发布了新的文献求助10
3秒前
大个应助BU会采纳,获得10
3秒前
4秒前
华仔应助优美紫槐采纳,获得10
5秒前
赵赵发布了新的文献求助10
6秒前
6秒前
思源应助何海采纳,获得10
6秒前
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
笨脑腐发布了新的文献求助10
10秒前
10秒前
kevin完成签到,获得积分10
11秒前
何海完成签到,获得积分10
11秒前
dd发布了新的文献求助10
11秒前
水草帽完成签到 ,获得积分10
12秒前
12秒前
腼腆的若雁完成签到,获得积分10
13秒前
烟花应助高妖丽采纳,获得10
15秒前
斗转星移发布了新的文献求助10
15秒前
乌龟完成签到,获得积分10
15秒前
暴发户完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
李健的小迷弟应助赵赵采纳,获得10
17秒前
bing完成签到,获得积分10
18秒前
专注的夜安完成签到,获得积分10
18秒前
19秒前
孔蓓蓓发布了新的文献求助20
19秒前
科研通AI6应助carols采纳,获得10
19秒前
李墩墩完成签到,获得积分10
20秒前
Rw发布了新的文献求助30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668991
求助须知:如何正确求助?哪些是违规求助? 4893967
关于积分的说明 15126270
捐赠科研通 4827813
什么是DOI,文献DOI怎么找? 2585040
邀请新用户注册赠送积分活动 1538736
关于科研通互助平台的介绍 1496970