Forecasting hourly PM2.5 concentration with an optimized LSTM model

可预测性 均方误差 空气质量指数 相关系数 预测技巧 气象学 环境科学 皮尔逊积矩相关系数 统计 计算机科学 机器学习 数学 地理
作者
Huynh Duy Tran,Hsiang-Yu Huang,Jhih-Yuan Yu,Sheng-Hsiang Wang
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:315: 120161-120161 被引量:5
标识
DOI:10.1016/j.atmosenv.2023.120161
摘要

Machine learning has become a powerful tool in air quality assessment which can provide timely and predictable information, alert the public, and take timely measures to prevent deteriorating air quality. The study proposed a deep learning-based long-short term memory (LSTM) model to predict hourly PM2.5 in one of the most polluted areas in Taiwan. A series of sensitivity assessments with model settings was conducted to optimize the performance of the LSTM model. Regarding the model input parameters, aerosol optical depth, pressure, and PM2.5 concentrations from the three nearby stations were used and later showed significant improvement in the forecast results. As a result of the 1–24 h forecast in 2021, the root-mean-square error (RMSE) shows a range from 6.3 to 13.1 μg m−3, and the Pearson correlation coefficient (r) varies from 0.92 to 0.59, as compared with the observed PM2.5. The model's predictability decreases as time increases—a strong correlation (r higher than 0.7) within a 9-h PM2.5 forecast. The seasonal variation showed that the highest RMSE, about 16.2 μg m−3, was observed during the winter, which is the high-polluted season in the area. Additionally, the spatial representation of the model was examined. The model can perform an efficient and satisfied forecast in the radius of 15 km from the training station. We further compared several deep learning-based algorithms in forecasting PM2.5, and our model performs better prediction results. The deep learning–based model investigated in this study can be implemented for routine air quality monitoring in urban areas and air-quality alarms associated with public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷完成签到,获得积分10
1秒前
冷笑完成签到,获得积分10
1秒前
程橙橙完成签到,获得积分10
2秒前
hs发布了新的文献求助30
2秒前
3秒前
sure发布了新的文献求助10
3秒前
GK完成签到,获得积分10
3秒前
李玉琼发布了新的文献求助10
4秒前
Maike发布了新的文献求助30
5秒前
大模型应助滕擎采纳,获得10
5秒前
Dawn发布了新的文献求助10
6秒前
科研虫完成签到 ,获得积分10
6秒前
科研通AI2S应助PigaChu采纳,获得10
8秒前
8秒前
8秒前
Yoel发布了新的文献求助10
9秒前
铁臂阿童木完成签到,获得积分10
10秒前
sure完成签到,获得积分10
11秒前
Benjamin发布了新的文献求助10
12秒前
HHH发布了新的文献求助10
13秒前
13秒前
13秒前
粗犷的凌兰完成签到,获得积分10
14秒前
烟花应助喜宝采纳,获得10
14秒前
抹不掉的记忆完成签到,获得积分10
14秒前
超帅凡阳完成签到,获得积分10
16秒前
18秒前
zijingliang发布了新的文献求助10
19秒前
超帅凡阳发布了新的文献求助10
19秒前
风趣小蜜蜂完成签到,获得积分10
20秒前
21秒前
21秒前
eisa完成签到,获得积分10
21秒前
李玉琼完成签到,获得积分10
22秒前
打打应助嘟嘟采纳,获得10
22秒前
李海洋完成签到,获得积分10
22秒前
24秒前
24秒前
xh发布了新的文献求助10
25秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334596
关于积分的说明 10271003
捐赠科研通 3051046
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802571
科研通“疑难数据库(出版商)”最低求助积分说明 760777