Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation

医学 重症监护室 共病 子群分析 接收机工作特性 急诊医学 危重病 重症监护医学 内科学 病危 置信区间
作者
Xiaoli Liu,Pan Hu,Wesley Yeung,Zhongheng Zhang,Vanda Ho,Chao Liu,Clark DuMontier,Patrick Thoral,Zhi Mao,Desen Cao,Roger G. Mark,Zhengbo Zhang,Mengling Feng,Deyu Li,Leo Anthony Celi
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (10): e657-e667 被引量:26
标识
DOI:10.1016/s2589-7500(23)00128-0
摘要

BackgroundComorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.MethodsIn this retrospective, international multicentre study, the ELDER-ICU model was developed using data from 14 US hospitals, and validated in 171 hospitals from the USA and Netherlands. Data were extracted from the Medical Information Mart for Intensive Care database, electronic ICU Collaborative Research Database, and Amsterdam University Medical Centers Database. We used six categories of data as predictors, including demographics and comorbidities, physical frailty, laboratory tests, vital signs, treatments, and urine output. Patient data from the first day of ICU stay were used to predict in-hospital mortality. We used the eXtreme Gradient Boosting algorithm (XGBoost) to develop models and the SHapley Additive exPlanations method to explain model prediction. The trained model was calibrated before internal, external, and temporal validation. The final XGBoost model was compared against three other machine learning algorithms and five clinical scores. We performed subgroup analysis based on age, sex, and race. We assessed the discrimination and calibration of models using the area under receiver operating characteristic (AUROC) and standardised mortality ratio (SMR) with 95% CIs.FindingsUsing the development dataset (n=50 366) and predictive model building process, the XGBoost algorithm performed the best in all types of validations compared with other machine learning algorithms and clinical scores (internal validation with 5037 patients from 14 US hospitals, AUROC=0·866 [95% CI 0·851–0·880]; external validation in the US population with 20 541 patients from 169 hospitals, AUROC=0·838 [0·829–0·847]; external validation in European population with 2411 patients from one hospital, AUROC=0·833 [0·812–0·853]; temporal validation with 4311 patients from one hospital, AUROC=0·884 [0·869–0·897]). In the external validation set (US population), the median AUROCs of bias evaluations covering eight subgroups were above 0·81, and the overall SMR was 0·99 (0·96–1·03). The top ten risk predictors were the minimum Glasgow Coma Scale score, total urine output, average respiratory rate, mechanical ventilation use, best state of activity, Charlson Comorbidity Index score, geriatric nutritional risk index, code status, age, and maximum blood urea nitrogen. A simplified model containing only the top 20 features (ELDER-ICU-20) had similar predictive performance to the full model.InterpretationThe ELDER-ICU model reliably predicts the risk of in-hospital mortality using routinely collected clinical features. The predictions could inform clinicians about patients who are at elevated risk of deterioration. Prospective validation of this model in clinical practice and a process for continuous performance monitoring and model recalibration are needed.FundingNational Institutes of Health, National Natural Science Foundation of China, National Special Health Science Program, Health Science and Technology Plan of Zhejiang Province, Fundamental Research Funds for the Central Universities, Drug Clinical Evaluate Research of Chinese Pharmaceutical Association, and National Key R&D Program of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐非笑发布了新的文献求助10
1秒前
1秒前
ihonest完成签到,获得积分10
1秒前
2秒前
小白完成签到 ,获得积分10
3秒前
欧耶发布了新的文献求助10
3秒前
Captain给Captain的求助进行了留言
5秒前
落后钢铁侠完成签到 ,获得积分10
5秒前
white完成签到 ,获得积分10
5秒前
soar完成签到,获得积分10
5秒前
lizhiqian2024发布了新的文献求助10
7秒前
开朗艳一完成签到,获得积分10
8秒前
唠叨的曼易完成签到,获得积分10
9秒前
11秒前
芜湖发布了新的文献求助20
12秒前
专注无施完成签到,获得积分10
13秒前
13秒前
稳重笑南完成签到,获得积分10
14秒前
吾身无拘完成签到,获得积分10
14秒前
无奈半蕾完成签到,获得积分10
15秒前
JamesPei应助科研通管家采纳,获得10
17秒前
HT应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
mcl发布了新的文献求助100
19秒前
asdfqwer发布了新的文献求助10
20秒前
Huanghong完成签到,获得积分10
20秒前
20秒前
sunny完成签到 ,获得积分10
21秒前
indigo发布了新的文献求助10
22秒前
沧月汐发布了新的文献求助10
22秒前
锦李完成签到,获得积分10
25秒前
lizhiqian2024发布了新的文献求助30
25秒前
王博士完成签到,获得积分10
26秒前
WD完成签到 ,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050