Deep Neural Network Model for Determination of Coal Cutting Resistance and Performance of Bucket-Wheel Excavator Based on the Environmental Properties and Excavation Parameters

挖掘机 凝聚力(化学) 煤矿开采 发掘 人工神经网络 采矿工程 均方误差 能源消耗 岩土工程 工程类 结构工程 计算机科学 数学 人工智能 统计 废物管理 有机化学 化学 电气工程
作者
Srđan Kostić,Milan Stojković,Velibor Ilić,Jelena Trivan
出处
期刊:Processes [MDPI AG]
卷期号:11 (11): 3067-3067 被引量:5
标识
DOI:10.3390/pr11113067
摘要

In the present paper, we develop a new model, based on the implementation of deep neural networks, for the estimation of a series of excavation parameters, depending on the main environmental and excavation properties. The developed model, with high statistical accuracy (R > 0.79) and small RMSE (<17% of the actual output values), enables the simultaneous assessment of the following excavation parameters: effective capacity Qef, maximum current consumption Imax, maximum power consumption Nmax, maximum force consumption Pmax, maximum energy consumption Emax, and maximum linear and areal cutting resistance, KLmax and KFmax, respectively, based on the impact of the following environmental properties and excavation parameters: coal unit weight, coal compression strength, coal cohesion, friction angle, excavator movement angle in the left and right direction, slice height and thickness, and wheel velocity. The data analyzed in the present paper were previously collected from three neighboring open-pit coal mines in Serbia: Tamnava Western Field, Tamnava Eastern Field, and Field D. These mines have similar geological conditions and coal properties. Additionally, for each output factor, a complex analysis is provided on the impact of the examined input factors, by applying the multiple linear regression method. As far as we are aware, this is the first time such a comprehensive estimation model has been suggested for the operation of a bucket-wheel excavator in the Neogene coal basins. The deep neural network (DNN) model, trained over 300 epochs, shows an MSE range of 6.7–16.5% across various input factors, with distinct evaluations for Imax due to its unique values (4.8–12.5%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分20
刚刚
WN发布了新的文献求助10
刚刚
2秒前
烟花应助臻灏采纳,获得10
2秒前
3秒前
huanger完成签到,获得积分10
3秒前
小小小小w完成签到,获得积分10
4秒前
明清完成签到,获得积分10
4秒前
隐形曼青应助巴拉采纳,获得10
5秒前
小熊猫完成签到,获得积分10
6秒前
轻松凡英完成签到,获得积分10
6秒前
changliu完成签到,获得积分10
6秒前
宇文追命发布了新的文献求助10
6秒前
7秒前
7秒前
dove发布了新的文献求助10
7秒前
7秒前
红红完成签到,获得积分10
8秒前
无极微光应助许诺采纳,获得20
8秒前
kkkkkk发布了新的文献求助10
8秒前
安静的幻竹完成签到,获得积分10
9秒前
并肩于雪山之巅完成签到 ,获得积分10
9秒前
yh发布了新的文献求助10
11秒前
汤圆完成签到,获得积分10
11秒前
汉堡包应助sinafre采纳,获得10
11秒前
11秒前
12秒前
铃兰发布了新的文献求助10
12秒前
wanci应助炸鸡加热采纳,获得10
12秒前
林北完成签到 ,获得积分20
12秒前
12秒前
ll发布了新的文献求助10
12秒前
李爱国应助孙博采纳,获得10
12秒前
Grace关注了科研通微信公众号
13秒前
哈哈喽完成签到 ,获得积分10
14秒前
丘比特应助navazzz罗采纳,获得10
14秒前
14秒前
田様应助美好雁荷采纳,获得10
14秒前
迷路小蚂蚁完成签到,获得积分10
15秒前
孤独世立发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544876
求助须知:如何正确求助?哪些是违规求助? 4630647
关于积分的说明 14617542
捐赠科研通 4572275
什么是DOI,文献DOI怎么找? 2506774
邀请新用户注册赠送积分活动 1483805
关于科研通互助平台的介绍 1455228