ResMorCNN Model: Hyperspectral Images Classification Using Residual-Injection Morphological Features and 3DCNN Layers

高光谱成像 残余物 计算机科学 人工智能 模式识别(心理学) 特征提取 上下文图像分类 数据挖掘 图像(数学) 算法
作者
Mohammad Reza Esmaeili,Dariush Abbasi‐Moghadam,Alireza Sharifi,Aqil Tariq,Qingting Li
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 219-243 被引量:26
标识
DOI:10.1109/jstars.2023.3328389
摘要

Hyperspectral imagery is widely used for analyzing substances and objects, specifically focusing on their classification. The advancement of processing capabilities and the emergence of cloud computing platforms have made deep learning (DL) models increasingly popular for accurately and efficiently hyperspectral images (HSI) classification. In addition, utilizing image-processing techniques that employ specific mathematical operations for feature extraction and noise reduction further improves the precision of HSI classification. This study introduces the ResMorCNN model, which utilizes 3-D convolutional layers and morphology mathematics to extract structural information, shapes, and interregional interactions from HSIs. These features are then incorporated into the model's layers using residual connections. This approach significantly enhances the classification accuracy of datasets with different characteristics. In fact, the proposed model achieves an average accuracy higher than the top-performing DL method in a competition. To evaluate the overall effectiveness of the proposed method, it was tested on four distinct and comprehensive datasets, Indian Pines, Pavia University, Houston University, and Salinas. These datasets were carefully selected, taking into account factors such as scale, dispersion, and sample size. The overall accuracy results obtained for each evaluated dataset were 97.81%, 99.33%, 98.67%, and 99.71%, respectively. This demonstrates an average improvement of 3.37% compared to the results of the best-performing method. The results demonstrate the effectiveness of the proposed ResMorCNN model for various applications that require accurate and efficient classification of HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YWJ完成签到 ,获得积分10
刚刚
冬虫草发布了新的文献求助10
1秒前
11发布了新的文献求助10
1秒前
罗沫沫完成签到,获得积分10
2秒前
2秒前
通关发布了新的文献求助10
3秒前
筱宸发布了新的文献求助10
3秒前
郑嘻嘻完成签到,获得积分10
4秒前
机智寒珊发布了新的文献求助10
5秒前
一念初见发布了新的文献求助10
5秒前
彭于晏应助科研小达子采纳,获得10
5秒前
ice完成签到 ,获得积分10
6秒前
starlx0813完成签到 ,获得积分10
6秒前
昏睡的蟠桃应助筱潇采纳,获得30
6秒前
6秒前
义气小白菜完成签到 ,获得积分10
7秒前
green完成签到,获得积分10
8秒前
zhogwe发布了新的文献求助10
8秒前
荷包蛋完成签到,获得积分10
9秒前
MIST完成签到,获得积分10
9秒前
芋泥发布了新的文献求助10
9秒前
机械师简完成签到,获得积分20
9秒前
上官若男应助奮斗采纳,获得10
9秒前
顺利的曼寒完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
z_zq完成签到,获得积分10
11秒前
11秒前
英姑应助堃kun采纳,获得10
11秒前
12秒前
wang1457完成签到,获得积分10
12秒前
12秒前
Eric完成签到,获得积分10
12秒前
生命科学的第一推动力完成签到 ,获得积分10
13秒前
乔治完成签到,获得积分10
13秒前
13秒前
王勾勾完成签到,获得积分10
14秒前
乐乐应助Danke采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578