清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quantum particle swarm optimization algorithm based on diversity migration strategy

计算机科学 粒子群优化 人口 元优化 多群优化 最优化问题 水准点(测量) 局部最优 帝国主义竞争算法 算法 数学优化 元启发式 莱维航班 汉明距离 数学 统计 随机游动 社会学 人口学 地理 大地测量学
作者
Chen Gong,Nanrun Zhou,Xia Shuhua,Shuiyuan Huang
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:157: 445-458 被引量:68
标识
DOI:10.1016/j.future.2024.04.008
摘要

Particle swarm optimization algorithm has been successfully applied to solve practical optimization problems due to its simplicity and efficiency. However, the traditional particle swarm optimization algorithm has inferior search performance in complicated high-dimensional optimization issues and is prone to falling into local optima. To address these problems, a new migration mechanism is introduced and a quantum particle swarm optimization method based on diversity migration is proposed. The strategy can capture different ranges of particles in the population, and the selection of migrating individuals depends not only on their fitness values but is also influenced by the positions within the population. The individual with the minimal average Hamming distance in the population can indicate the direction of iterative population optimization. After comparing the fitness values and the average Hamming distance between particles, the particles deviating from the central range of the population are replaced. The performance of the proposed algorithm is investigated under seven different sets of benchmark function optimization problems in the CEC2020 single-objective boundary-constrained optimization competition, and is compared with those of several other representative optimization algorithms. The quantum particle swarm optimization algorithm based on diversity migration strategy outperforms other typical optimization algorithms. Moreover, the proposed algorithm is convergent and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
yipmyonphu应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
20秒前
20秒前
21秒前
niko发布了新的文献求助10
22秒前
niko发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534416
求助须知:如何正确求助?哪些是违规求助? 4622404
关于积分的说明 14582630
捐赠科研通 4562632
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022