清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pore characterization was achieved based on the improved U-net deep learning network model and scanning electron microscope images

扫描电子显微镜 表征(材料科学) 网(多面体) 材料科学 电子显微镜 计算机科学 人工智能 光学 纳米技术 物理 数学 复合材料 几何学
作者
Xiangru Chen,Xin Tang,Junjie Xiong,Ruiyu He,Biao Wang
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:: 1-15 被引量:3
标识
DOI:10.1080/10916466.2024.2326178
摘要

The SEM image method is commonly used in the qualitative characterization of shale pores. The development of shale micro-reservoir pores can be visually observed through SEM images, but the efficiency of manual image processing is low and subjective. The introduction of deep learning greatly improves the efficiency of pore analysis. In this paper, the argon ion polishing SEM image of Longmaxi Formation shale in southern Sichuan is taken as an example. Intelligent identification and quantitative characterization of pores in shale SEM images are realized by Pore-net network model. Pore-net is based on the U-net network model. The way the model reads the data is changed so that the model does not focus on the region of interest. The number of convolutional layers of the model is increased. The Canny edge extraction algorithm is added. It not only reduces the workload of data set production, but also enhances the ability of network model to identify pores. The results show that the deep learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The full convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of shale SEM images. Compared with FCN and DeepLab V3+ network model, Pore-net performs better. Only 170 data sets are used to train the model. The Pore-net network model still has a good recognition effect on pores, which solves the problem of low accuracy of traditional pore recognition methods. The deviation between the porosity calculated by the Pore-net network model and the experimental data is between 12% and 19%. Compared with the porosity results calculated by the binarization method and other network models, the results calculated by Pore-net are closer to the real values, which proves that the porosity calculated by the Pore-net network model is reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Axs完成签到,获得积分10
18秒前
tutu完成签到,获得积分10
38秒前
高熵君完成签到,获得积分10
1分钟前
田様应助开心远山采纳,获得10
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
AmyHu完成签到,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助150
4分钟前
4分钟前
未来可期完成签到 ,获得积分10
4分钟前
彩虹儿应助ceeray23采纳,获得20
4分钟前
JamesPei应助王先森采纳,获得10
4分钟前
4分钟前
Ava应助孙立军采纳,获得10
4分钟前
4分钟前
王先森发布了新的文献求助10
4分钟前
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
hwj524发布了新的文献求助10
6分钟前
优秀棒棒糖完成签到 ,获得积分10
6分钟前
斯文败类应助33采纳,获得10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
hwj524完成签到,获得积分10
6分钟前
2386完成签到,获得积分10
6分钟前
amanda完成签到 ,获得积分10
7分钟前
7分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
7分钟前
33发布了新的文献求助10
7分钟前
Akim应助33采纳,获得10
7分钟前
慕青应助科研通管家采纳,获得10
7分钟前
天天快乐应助Sylvia卉采纳,获得10
8分钟前
9分钟前
浮游应助Koala04采纳,获得10
9分钟前
Sylvia卉发布了新的文献求助10
9分钟前
9分钟前
Sylvia卉完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844888
求助须知:如何正确求助?哪些是违规求助? 4145037
关于积分的说明 12833908
捐赠科研通 3891770
什么是DOI,文献DOI怎么找? 2139275
邀请新用户注册赠送积分活动 1159291
关于科研通互助平台的介绍 1059850