已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

C²Former: Calibrated and Complementary Transformer for RGB-Infrared Object Detection

遥感 计算机科学 目标检测 变压器 RGB颜色模型 人工智能 计算机视觉 模式识别(心理学) 电压 地质学 电气工程 工程类
作者
Maoxun Yuan,Xingxing Wei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:80
标识
DOI:10.1109/tgrs.2024.3376819
摘要

Object detection on visible (RGB) and infrared (IR) images, as an emerging solution to facilitate robust detection for around-the-clock applications, has received extensive attention in recent years. With the help of IR images, object detectors have been more reliable and robust in practical applications by using RGB-IR combined information. However, existing methods still suffer from modality miscalibration and fusion imprecision problems. Since transformer has the powerful capability to model the pairwise correlations between different features, in this paper, we propose a novel Calibrated and Complementary Transformer called C 2 Former to address these two problems simultaneously. In C 2 Former, we design an Inter-modality Cross-Attention (ICA) module to obtain the calibrated and complementary features by learning the cross-attention relationship between the RGB and IR modality. To reduce the computational cost caused by computing the global attention in ICA, an Adaptive Feature Sampling (AFS) module is introduced to decrease the dimension of feature maps. Because C 2 Former performs in the feature domain, it can be embedded into existed RGB-IR object detectors via the backbone network. Thus, one single-stage and one two-stage object detector both incorporating our C 2 Former are constructed to evaluate its effectiveness and versatility. With extensive experiments on the DroneVehicle and KAIST RGB-IR datasets, we verify that our method can fully utilize the RGB-IR complementary information and achieve robust detection results. The code is available at https://github.com/yuanmaoxun/C2Former.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪无痕3074发布了新的文献求助10
刚刚
yyyyyyy发布了新的文献求助10
刚刚
古月完成签到 ,获得积分10
1秒前
Sitroul发布了新的文献求助10
3秒前
yang发布了新的文献求助10
3秒前
zhu发布了新的文献求助10
4秒前
一个人完成签到,获得积分10
5秒前
皮皮团发布了新的文献求助10
6秒前
充电宝应助雪无痕3074采纳,获得10
6秒前
烟花应助暴走小面包采纳,获得10
6秒前
6秒前
无花果应助ccc采纳,获得10
7秒前
科研通AI6应助玄笺采纳,获得10
7秒前
科研通AI6应助科西西采纳,获得30
10秒前
英姑应助lf-leo采纳,获得10
10秒前
杰哥不要发布了新的文献求助10
11秒前
刘星星完成签到,获得积分20
11秒前
科研通AI6应助典雅的乐安采纳,获得10
11秒前
宁宁要去看文献了完成签到,获得积分10
13秒前
14秒前
14秒前
晏啊发布了新的文献求助10
15秒前
汉堡包应助猪兔采纳,获得10
16秒前
17秒前
18秒前
tt发布了新的文献求助10
18秒前
19秒前
yyyyyyy发布了新的文献求助10
20秒前
20秒前
20秒前
是个哑巴发布了新的文献求助10
21秒前
坚定珍发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
25秒前
lf-leo发布了新的文献求助10
25秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657404
求助须知:如何正确求助?哪些是违规求助? 4808614
关于积分的说明 15079006
捐赠科研通 4815482
什么是DOI,文献DOI怎么找? 2576684
邀请新用户注册赠送积分活动 1531782
关于科研通互助平台的介绍 1490279