Robot assisted bone milling state classification network with attention mechanism

计算机科学 机制(生物学) 机器人 人工智能 模式识别(心理学) 机器学习 认识论 哲学
作者
Jia Duo,Yuanzhu Zhan,Jianxun Zhang,Yu Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123726-123726 被引量:3
标识
DOI:10.1016/j.eswa.2024.123726
摘要

In the process of medical robot assisted bone milling surgery, the accuracy of recognition of milling state is crucial for surgical safety. However, previous studies have rarely used neural networks for signal analysis and processing, and not included attention mechanisms in neural networks to distinguish the weights of different signal features. In this paper a tactile-auditory attention model for milling state recognition is proposed. The model combines attention mechanism with fully connected neural networks. First, the milling state is divided into four types: idling, cortical bone, cancellous bone, and muscle. The acceleration and sound pressure information are extracted in 13 dimensions each, including 3-dimensional time-domain features and 10-dimensional frequency-domain features. Second, a milling state classification network with attention mechanism was established, including pre-connected attention mechanism (Pre-AT) and embedded attention mechanism (Emb-AT). The experimental results showed greater performance than other traditional methods, with test set accuracy of 94.57% and 95.29%, respectively. Afterwards, the impact of single signal and fused signal on recognition results was explored. From the experimental results, fused tactile-auditory signals had higher accuracy than single signal recognition. The accuracy rates of the test set using fused signals and acceleration and sound pressure signals were 95.29%, 92.09% and 90.07%. In addition, attention vectors are visualized to identify the degree of emphasis on different signals during the recognition process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
顺利的映天应助YZ采纳,获得10
1秒前
1秒前
柳叶刀Z完成签到 ,获得积分10
1秒前
1秒前
3秒前
搜集达人应助酷炫幻桃采纳,获得10
3秒前
Hello应助秦源采纳,获得10
5秒前
伶俐寒凡发布了新的文献求助10
6秒前
快乐的小蘑菇完成签到,获得积分10
6秒前
YanDongXu完成签到 ,获得积分10
6秒前
RY完成签到,获得积分10
6秒前
6秒前
LL发布了新的文献求助10
6秒前
赘婿应助夹心饼干采纳,获得10
6秒前
8秒前
爱听歌完成签到,获得积分20
9秒前
甜美千山完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
SY发布了新的文献求助10
11秒前
我是老大应助LL采纳,获得10
12秒前
浮游应助ZYY采纳,获得10
12秒前
三金发布了新的文献求助10
13秒前
科研通AI6应助小黑驴采纳,获得10
13秒前
13秒前
852应助窦房结采纳,获得10
15秒前
香蕉觅云应助asdf采纳,获得10
15秒前
酷炫幻桃发布了新的文献求助10
16秒前
16秒前
16秒前
酷炫不斜完成签到 ,获得积分10
17秒前
浮游应助小徐采纳,获得10
18秒前
无奈的若风应助Robin采纳,获得10
18秒前
19秒前
19秒前
我是老大应助kl采纳,获得10
20秒前
秦源发布了新的文献求助10
21秒前
lhy驳回了顾矜应助
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498931
求助须知:如何正确求助?哪些是违规求助? 4596001
关于积分的说明 14451744
捐赠科研通 4529071
什么是DOI,文献DOI怎么找? 2481812
邀请新用户注册赠送积分活动 1465811
关于科研通互助平台的介绍 1438744