Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN

卷积神经网络 风速 水准点(测量) 气象学 噪音(视频) 模式(计算机接口) 风力发电 希尔伯特-黄变换 计算机科学 人工神经网络 人工智能 模式识别(心理学) 白噪声 地理 物理 工程类 电信 大地测量学 电气工程 图像(数学) 操作系统
作者
Qingyang Li,Guosong Wang,Xinrong Wu,Zhigang Gao,Bo Dan
出处
期刊:Energy [Elsevier BV]
卷期号:299: 131448-131448 被引量:16
标识
DOI:10.1016/j.energy.2024.131448
摘要

Accurate wind speed forecasting is of great significance for the utilization of Arctic wind energy resources. The traditional single model is difficult to fully depict the nonlinearity of wind speed and its wide range of variations. In this paper, a hybrid model is proposed for multi-step wind speed forecasting, which combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), convolutional neural network (CNN) and long-short term memory neural network (LSTM). The wind speed series is firstly decomposed into several intrinsic mode functions (IMF) by CEEMDAN to provide more stable data. Secondly, four-step-ahead forecasts are realized using well-tuned CNN-LSTM model for each IMF. Finally, the forecasted wind speed is obtained by reconstruction. The effectiveness and feasibility of the proposed method is validated based on thorough evaluation and step-by-step analysis. The RMSE of the proposed model is 0.4046 m/s, which are reduced by 58% compared with 7 benchmark models. Furthermore, the average prediction interval of the proposed model is also reduced by 20%, 16% and 7% compared to CEEMDAN-FCNN, CEEMDAN-CNN and CEEMDAN-LSTM respectively. The results prove that all three parts of the proposed model contribute to a better performance in wind speed forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tiwiiw完成签到 ,获得积分10
1秒前
冷艳薯片完成签到,获得积分10
3秒前
ChiHiRo9Q应助杨幂采纳,获得10
4秒前
4秒前
Ws完成签到,获得积分10
4秒前
张小馨完成签到 ,获得积分10
5秒前
5秒前
7秒前
研友_8WzJOZ完成签到,获得积分10
8秒前
郭凯辉发布了新的文献求助10
9秒前
赛因斯完成签到,获得积分10
9秒前
16秒前
月光入梦完成签到 ,获得积分10
19秒前
美好的小馒头完成签到,获得积分20
20秒前
20秒前
李123456完成签到,获得积分10
20秒前
可爱的函函应助惠向雁采纳,获得30
21秒前
科研通AI5应助hodge采纳,获得10
22秒前
ohcepf发布了新的文献求助10
23秒前
23秒前
小金星星完成签到 ,获得积分10
23秒前
24秒前
如意完成签到,获得积分10
27秒前
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
29秒前
glj应助科研通管家采纳,获得10
29秒前
mm应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
glj应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
30秒前
搜集达人应助Bronya采纳,获得10
31秒前
31秒前
贰什柒完成签到,获得积分10
32秒前
搜集达人应助shinble采纳,获得10
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852