降级(电信)
电极
粒子(生态学)
机制(生物学)
化学工程
化学
材料科学
电气工程
物理
工程类
物理化学
海洋学
量子力学
地质学
作者
Xue Bai,Fengyi Sun,Liyan Ma,Zhuwu Jiang,Hongcheng Di,Chuntao Pan,Fengying Zhang,Jiahan Yang,Hongyu Zhang
标识
DOI:10.1016/j.jece.2024.112500
摘要
A green and sustainable three-dimensional particle electrodes system with nickel-iron layered double hydroxide mixing activated carbon particles (NiFe-LDH/AC) as particle electrodes is used in this work. Its employment in degradation of N-Nitrosodiethylamine (NDEA), A type of nitrosamines disinfection byproducts (NAs) widely present in water bodies, exhibiting significant degradation efficiency at close to neutral pH. Response surface methodology (RSM) is used to analyze the interaction effects and predict optimal conditions of four operating parameters (influent water flow, electrolyte concentration, current density and initial concentration) on the NDEA degradation efficiency. Calculated coefficients of determination (R2) are higher than 0.997 for all responses according to analysis of variance. At optimum conditions, a maximum degradation efficiency of 71.88% is achieved for NDEA. The results of electron paramagnetic resonance (EPR) and free radical quenching experiments indicate that the degradation of NDEA in the 3D AER system is dominated by •OH. Furthermore, based on the recognition of main reaction intermediates by GC-MS and density functional theory (DFT), possible degradation pathway is proposed and toxicological evaluation of degradation products is made. Our research provides a promising alternative method for the efficient and environmentally friendly removal of NAs from water.
科研通智能强力驱动
Strongly Powered by AbleSci AI