已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Insight into the Electronic Properties of Semiconductor Heterostructure Based on Machine Learning and First-Principles

计算机科学 支持向量机 石墨烯 异质结 人工智能 机器学习 半导体 材料科学 带隙 维数之咒 降维 嵌入 纳米技术 光电子学
作者
Yuanyuan Yuan,Junqiang Ren,Hongtao Xue,Junchen Li,Fuling Tang,Peiqing La,Xuefeng Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (9): 12462-12472 被引量:7
标识
DOI:10.1021/acsami.2c15957
摘要

A first-principles approach is a powerful means of gaining insight into the intrinsic structure and properties of materials. However, with the implementation of material genetic engineering, it is still a challenging road to discover materials with high satisfaction. One alternative is to employ machine-learning techniques to mine data and predict performance. In this present contribution, the method is taken to predict the band gap opening value of graphene in a heterostructure. First, the data of 2076 binary compounds in the Materials Project library are used to achieve visual dimensionality reduction of the data set through a t-distributed stochastic neighbor embedding (t-SNE) algorithm in unsupervised learning. Then, a series of semiconductor components are screened out and form heterostructures with graphene. Second, by means of the ensemble learning EXtreme Gradient Boost (XGBoost) algorithm and support vector machine (SVM) technology, two prediction frameworks are built to predict the band gap opening value of the graphene in the system. Finally, density functional theory (DFT) is used to calculate the energy band and density of states for comparison. Analysis shows that the prediction model has an accuracy rate of 88.3%, and there is little difference between prediction results and calculation results. We anticipate that this framework model would have fascinating applications in predicting the electronic properties of various multiphase materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李治稳发布了新的文献求助10
1秒前
1秒前
mikeleung发布了新的文献求助10
2秒前
2秒前
Pjmeng发布了新的文献求助10
2秒前
番茄爱上西红柿完成签到,获得积分10
3秒前
酷波er应助美丽语芙采纳,获得10
5秒前
充电宝应助dwc采纳,获得10
7秒前
8秒前
crisis发布了新的文献求助10
8秒前
港港完成签到 ,获得积分10
8秒前
Remember完成签到 ,获得积分10
9秒前
IceShock完成签到,获得积分10
11秒前
大个应助绿绿绿绿采纳,获得10
12秒前
Jasper应助Pjmeng采纳,获得30
14秒前
凯文完成签到 ,获得积分10
15秒前
chen完成签到,获得积分10
15秒前
15秒前
h2o完成签到,获得积分20
16秒前
17秒前
斯文败类应助crisis采纳,获得10
18秒前
乐乐应助淡然的宛秋采纳,获得10
19秒前
尘尘发布了新的文献求助10
19秒前
打打应助苹果白凝采纳,获得30
20秒前
QA发布了新的文献求助10
20秒前
美丽语芙完成签到,获得积分10
21秒前
wanci应助O0O采纳,获得10
22秒前
24秒前
哈里谢顿完成签到,获得积分10
26秒前
哈里谢顿发布了新的文献求助10
29秒前
qingkong完成签到 ,获得积分10
29秒前
30秒前
小蘑菇应助淡定的晓刚采纳,获得10
30秒前
激昂的千萍完成签到 ,获得积分10
32秒前
kyrie发布了新的文献求助10
32秒前
34秒前
芝士momoRIN完成签到,获得积分10
36秒前
流光完成签到,获得积分10
37秒前
37秒前
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Study of enhancing employee engagement at workplace by adopting internet of things 200
Champagne & Shambles: The Arkwright's and the Country House in Crisis 200
The Arkwrights: Spinners of Fortune 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837178
求助须知:如何正确求助?哪些是违规求助? 3379511
关于积分的说明 10509156
捐赠科研通 3099119
什么是DOI,文献DOI怎么找? 1706922
邀请新用户注册赠送积分活动 821329
科研通“疑难数据库(出版商)”最低求助积分说明 772536