Domain-Consistent and Uncertainty-Aware Network for Generalizable Gaze Estimation

计算机科学 凝视 估计 人工智能 领域(数学分析) 机器学习 计算机视觉 数学分析 数学 管理 经济
作者
Sihui Zhang,Yi Tian,Yilei Zhang,Mei Tian,Yaping Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6996-7011
标识
DOI:10.1109/tmm.2024.3358948
摘要

Unsupervised domain adaptive (UDA) gaze estimation aims to predict gaze directions of unlabeled target face or eye images given a set of annotated source images, which has been widely applied in practical applications. However, existing methods still perform poorly due to two major challenges. 1) There exists large personalized differences and style discrepancies between source and target samples, which leads the learned source model easily collapsing to biased results; 2) Data uncertainties inherent in reference samples will affect the generalization ability of their models. To tackle the above challenges, in this paper, we propose a novel Domain-Consistent and Uncertainty-Aware (DCUA) network for generalizable gaze estimation. Our DCUA network employs a two-phase framework where a primary training sub-network (PTNet) and a refined adaptation sub-network (RANet) are trained on the source and target domain, respectively. Firstly, to obtain robust and pure gaze-related features, we propose twain domain consistent constraints, that is, the intra-domain consistent constraint and the inter-domain consistent constraint. These two constraints could eliminate the impact of gaze-irrelevant factors by maintaining consistency between label and feature space. Secondly, to further improve the adaptability of our model, we propose dual uncertainty perception modules, which include an intrinsic uncertainty module and an extrinsic uncertainty module. These modules help DCUA network distinguish inferior reference samples and avoid overfitting to them. Experiments on four cross-domain gaze estimation tasks demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang应助水心采纳,获得10
刚刚
1秒前
大草履虫完成签到 ,获得积分10
2秒前
3秒前
852应助猫猫采纳,获得10
4秒前
4秒前
5秒前
CHEN完成签到,获得积分20
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
风趣热狗应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
如意枫叶应助科研通管家采纳,获得20
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
落忆发布了新的文献求助30
8秒前
10秒前
11秒前
11秒前
猫猫完成签到,获得积分20
11秒前
11秒前
DoctorX完成签到,获得积分10
11秒前
叮叮发布了新的文献求助10
11秒前
13秒前
杨洋发布了新的文献求助10
14秒前
14秒前
小蘑菇应助wswwsw采纳,获得10
15秒前
16秒前
猫猫发布了新的文献求助10
16秒前
晖不是辉发布了新的文献求助10
16秒前
乔达摩悉达多完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4455437
求助须知:如何正确求助?哪些是违规求助? 3921247
关于积分的说明 12169230
捐赠科研通 3571729
什么是DOI,文献DOI怎么找? 1961886
邀请新用户注册赠送积分活动 1001059
科研通“疑难数据库(出版商)”最低求助积分说明 895906