亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blood cell image segmentation and classification: a systematic review

分割 计算机科学 人工智能 特征选择 图像分割 模式识别(心理学) 图像处理 机器学习 图像(数学)
作者
Muhammad Shahzad,Farman Ali,Syed Hamad Shirazi,Asad Rasheed,Awais Ahmad,Babar Shah,Daehan Kwak
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e1813-e1813 被引量:2
标识
DOI:10.7717/peerj-cs.1813
摘要

Background Blood diseases such as leukemia, anemia, lymphoma, and thalassemia are hematological disorders that relate to abnormalities in the morphology and concentration of blood elements, specifically white blood cells (WBC) and red blood cells (RBC). Accurate and efficient diagnosis of these conditions significantly depends on the expertise of hematologists and pathologists. To assist the pathologist in the diagnostic process, there has been growing interest in utilizing computer-aided diagnostic (CAD) techniques, particularly those using medical image processing and machine learning algorithms. Previous surveys in this domain have been narrowly focused, often only addressing specific areas like segmentation or classification but lacking a holistic view like segmentation, classification, feature extraction, dataset utilization, evaluation matrices, etc . Methodology This survey aims to provide a comprehensive and systematic review of existing literature and research work in the field of blood image analysis using deep learning techniques. It particularly focuses on medical image processing techniques and deep learning algorithms that excel in the morphological characterization of WBCs and RBCs. The review is structured to cover four main areas: segmentation techniques, classification methodologies, descriptive feature selection, evaluation parameters, and dataset selection for the analysis of WBCs and RBCs. Results Our analysis reveals several interesting trends and preferences among researchers. Regarding dataset selection, approximately 50% of research related to WBC segmentation and 60% for RBC segmentation opted for manually obtaining images rather than using a predefined dataset. When it comes to classification, 45% of the previous work on WBCs chose the ALL-IDB dataset, while a significant 73% of researchers focused on RBC classification decided to manually obtain images from medical institutions instead of utilizing predefined datasets. In terms of feature selection for classification, morphological features were the most popular, being chosen in 55% and 80% of studies related to WBC and RBC classification, respectively. Conclusion The diagnostic accuracy for blood-related diseases like leukemia, anemia, lymphoma, and thalassemia can be significantly enhanced through the effective use of CAD techniques, which have evolved considerably in recent years. This survey provides a broad and in-depth review of the techniques being employed, from image segmentation to classification, feature selection, utilization of evaluation matrices, and dataset selection. The inconsistency in dataset selection suggests a need for standardized, high-quality datasets to strengthen the diagnostic capabilities of these techniques further. Additionally, the popularity of morphological features indicates that future research could further explore and innovate in this direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助张迪采纳,获得10
2秒前
汉堡包应助Spine脊柱采纳,获得10
7秒前
yyy完成签到,获得积分10
7秒前
大力的千筹完成签到,获得积分20
15秒前
16秒前
张迪发布了新的文献求助10
20秒前
张迪完成签到,获得积分20
33秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
34秒前
田様应助科研通管家采纳,获得10
34秒前
烟花应助科研通管家采纳,获得10
34秒前
酷波er应助科研通管家采纳,获得10
34秒前
1分钟前
1分钟前
刚少kk完成签到,获得积分10
1分钟前
Spine脊柱发布了新的文献求助10
1分钟前
柯语雪完成签到 ,获得积分10
1分钟前
英俊的铭应助dudu采纳,获得10
1分钟前
monair完成签到 ,获得积分10
1分钟前
两个我完成签到 ,获得积分10
2分钟前
Jasper应助莫里亚蒂采纳,获得10
2分钟前
一卷钢丝球完成签到,获得积分10
2分钟前
乐乐应助无心的雪枫采纳,获得10
2分钟前
2分钟前
2分钟前
高源伯完成签到 ,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
顾矜应助joleisalau采纳,获得10
2分钟前
breeze完成签到,获得积分10
2分钟前
扶摇完成签到 ,获得积分10
2分钟前
2分钟前
充电宝应助番茄采纳,获得10
3分钟前
da发布了新的文献求助10
3分钟前
duan完成签到 ,获得积分10
3分钟前
柚子完成签到 ,获得积分10
3分钟前
科研通AI5应助Lorain采纳,获得10
3分钟前
Qvby3完成签到 ,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
Spine脊柱发布了新的文献求助10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780779
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669403
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732