High-Similarity-Pass Attention for Single Image Super-Resolution

计算机科学 人工智能 相似性(几何) 模式识别(心理学) 图像处理 计算机视觉 图像(数学) 图像分辨率
作者
Jian-Nan Su,Min Gan,Guangyong Chen,Wenzhong Guo,C. L. Philip Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 610-624 被引量:11
标识
DOI:10.1109/tip.2023.3348293
摘要

Recent developments in the field of non-local attention (NLA) have led to a renewed interest in self-similarity-based single image super-resolution (SISR). Researchers usually use the NLA to explore non-local self-similarity (NSS) in SISR and achieve satisfactory reconstruction results. However, a surprising phenomenon that the reconstruction performance of the standard NLA is similar to that of the NLA with randomly selected regions prompted us to revisit NLA. In this paper, we first analyzed the attention map of the standard NLA from different perspectives and discovered that the resulting probability distribution always has full support for every local feature, which implies a statistical waste of assigning values to irrelevant non-local features, especially for SISR which needs to model long-range dependence with a large number of redundant non-local features. Based on these findings, we introduced a concise yet effective soft thresholding operation to obtain high-similarity-pass attention (HSPA), which is beneficial for generating a more compact and interpretable distribution. Furthermore, we derived some key properties of the soft thresholding operation that enable training our HSPA in an end-to-end manner. The HSPA can be integrated into existing deep SISR models as an efficient general building block. In addition, to demonstrate the effectiveness of the HSPA, we constructed a deep high-similarity-pass attention network (HSPAN) by integrating a few HSPAs in a simple backbone. Extensive experimental results demonstrate that HSPAN outperforms state-of-the-art approaches on both quantitative and qualitative evaluations. Our code and a pre-trained model were uploaded to GitHub ( https://github.com/laoyangui/HSPAN ) for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wz发布了新的文献求助10
刚刚
1秒前
1秒前
花痴的手套完成签到 ,获得积分10
2秒前
勤劳函发布了新的文献求助10
6秒前
Mao完成签到 ,获得积分10
6秒前
英俊的铭应助xueyixiaogou采纳,获得10
7秒前
都是发布了新的文献求助10
8秒前
wz完成签到,获得积分10
9秒前
科研通AI5应助我是大彩笔采纳,获得10
9秒前
冉冉完成签到 ,获得积分0
11秒前
义气的访波应助都是采纳,获得10
11秒前
14秒前
星曳发布了新的文献求助150
15秒前
小精灵发布了新的文献求助10
19秒前
爱吃烤脆骨完成签到,获得积分20
22秒前
bbsheng发布了新的文献求助10
25秒前
Archy发布了新的文献求助10
28秒前
pluto应助黑米粥采纳,获得10
28秒前
pluto应助黑米粥采纳,获得10
28秒前
善学以致用应助星曳采纳,获得10
31秒前
爆米花应助sdf23采纳,获得100
31秒前
慕青应助呃呃采纳,获得30
38秒前
41秒前
44秒前
灵巧人英完成签到,获得积分20
45秒前
46秒前
深情安青应助科研通管家采纳,获得10
47秒前
英姑应助科研通管家采纳,获得10
48秒前
YU完成签到,获得积分20
49秒前
sdf23发布了新的文献求助100
50秒前
灵巧人英发布了新的文献求助30
51秒前
慕青应助小精灵采纳,获得10
56秒前
ding应助稳稳采纳,获得10
57秒前
ding应助小王同学搞学术采纳,获得10
57秒前
勤劳函完成签到,获得积分10
58秒前
昏睡的蟠桃应助林溪采纳,获得200
59秒前
斯文败类应助风止采纳,获得10
1分钟前
时尚语梦完成签到 ,获得积分10
1分钟前
沙与沫完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224191
捐赠科研通 3040859
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649