亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

USER: Unified Semantic Enhancement With Momentum Contrast for Image-Text Retrieval

计算机科学 人工智能 推论 图像检索 任务(项目管理) 水准点(测量) 自然语言处理 情报检索 图像(数学) 大地测量学 经济 管理 地理
作者
Yan Zhang,Zhong Ji,Di Wang,Yanwei Pang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 595-609 被引量:17
标识
DOI:10.1109/tip.2023.3348297
摘要

As a fundamental and challenging task in bridging language and vision domains, Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality, and its key challenge is to measure the semantic similarity across different modalities. Although significant progress has been achieved, existing approaches typically suffer from two major limitations: (1) It hurts the accuracy of the representation by directly exploiting the bottom-up attention based region-level features where each region is equally treated. (2) It limits the scale of negative sample pairs by employing the mini-batch based end-to-end training mechanism. To address these limitations, we propose a Unified Semantic Enhancement Momentum Contrastive Learning (USER) method for ITR. Specifically, we delicately design two simple but effective Global representation based Semantic Enhancement (GSE) modules. One learns the global representation via the self-attention algorithm, noted as Self-Guided Enhancement (SGE) module. The other module benefits from the pre-trained CLIP module, which provides a novel scheme to exploit and transfer the knowledge from an off-the-shelf model, noted as CLIP-Guided Enhancement (CGE) module. Moreover, we incorporate the training mechanism of MoCo into ITR, in which two dynamic queues are employed to enrich and enlarge the scale of negative sample pairs. Meanwhile, a Unified Training Objective (UTO) is developed to learn from mini-batch based and dynamic queue based samples. Extensive experiments on the benchmark MSCOCO and Flickr30K datasets demonstrate the superiority of both retrieval accuracy and inference efficiency. For instance, compared with the existing best method NAAF, the metric R@1 of our USER on the MSCOCO 5K Testing set is improved by 5% and 2.4% on caption retrieval and image retrieval without any external knowledge or pre-trained model while enjoying over 60 times faster inference speed. Our source code will be released at https://github.com/zhangy0822/USER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
万能图书馆应助present采纳,获得10
8秒前
jjj发布了新的文献求助10
8秒前
12秒前
长发飘飘发布了新的文献求助10
15秒前
慕青应助jjj采纳,获得30
24秒前
所所应助长发飘飘采纳,获得10
27秒前
斯文败类应助violet兰采纳,获得10
36秒前
46秒前
47秒前
50秒前
55秒前
coco发布了新的文献求助30
56秒前
wns驳回了大模型应助
1分钟前
1分钟前
研友_ZG4ml8完成签到 ,获得积分0
1分钟前
科研通AI5应助awww采纳,获得10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
1分钟前
awww发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
wns发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
violet兰完成签到,获得积分20
2分钟前
wns关闭了wns文献求助
2分钟前
violet兰发布了新的文献求助10
2分钟前
3分钟前
NS完成签到,获得积分10
3分钟前
可爱的函函应助penny采纳,获得10
4分钟前
4分钟前
4分钟前
penny发布了新的文献求助10
4分钟前
白菜完成签到 ,获得积分10
4分钟前
科研通AI5应助penny采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333713
关于积分的说明 10263130
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511