Prediction model of spontaneous combustion risk of extraction borehole based on PSO-BPNN and its application

均方误差 近似误差 粒子群优化 平均绝对百分比误差 统计 相关系数 数学 决定系数 人工神经网络 平均绝对误差 算法 计算机科学 人工智能
作者
Wei Wang,Ran Liang,Yun Qi,Xinchao Cui,Jiao Liu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:11
标识
DOI:10.1038/s41598-023-45806-9
摘要

Abstract The feasibility and accuracy of the risk prediction of gas extraction borehole spontaneous combustion is improved to avoid the occurrence of spontaneous combustion in the gas extraction borehole. A gas extraction borehole spontaneous combustion risk prediction model (PSO-BPNN model) coupling the PSO algorithm with BP neural network is established through improving the connection weight and threshold values of BP neural network by the particle swarm optimization (PSO) algorithm. The prediction results of the PSO-BPNN model are compared and analyzed with that of the BP neural network model (BPNN model), GA-BPNN model, SSA-BPNN model and MPA-BPNN model. The results showed as follows: the average relative error of the PSO-BPNN model was 4.38%; the average absolute error was 0.0678; the root mean square error was 0.0934; and the determination coefficient was 0.9874. Compared with the BPNN model, the average relative error, average absolute error and root mean square error decreased by 9.35%, 0.1707 and 0.2056 respectively; and the determination coefficient increased by 0.1169. Compared with the GA-BPNN model, the average relative error, average absolute error and root mean square error decreased by 3.19%, 0.0602 and 0.0821 respectively; and the determination coefficient increased by 0.0320. Compared with the SSA-BPNN model, the average relative error, average absolute error and root mean square error decreased by 5.70%, 0.0820 and 0.1100 respectively; and the determination coefficient increased by 0.0474. Compared with the MPA-BPNN model, the average relative error, average absolute error and root mean square error decreased by 3.50%, 0.0861 and 0.1125 respectively; and the determination coefficient increased by 0.0488, proving that the PSO-BPNN model is more accurate than the BPNN model, GA-BPNN model, SSA-BPNN model and MPA-BPNN model as for prediction. When the PSO-BPNN model was applied to three extraction boreholes A, B, and C in a coal mine of Shanxi, the prediction results were better than the BPNN model, GA-BPNN model, SSA-BPNN model and MPA-BPNN model, proving the accuracy and stability of the PSO-BPNN model in predicting risk of borehole spontaneous combustion in other mine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tangyartie完成签到 ,获得积分10
刚刚
1秒前
innnnd发布了新的文献求助10
4秒前
Joseph_sss完成签到 ,获得积分10
5秒前
CFT发布了新的文献求助10
5秒前
CodeCraft应助Maggie采纳,获得10
6秒前
迟迟不吃吃完成签到 ,获得积分10
6秒前
落寞的凝安完成签到 ,获得积分10
6秒前
@Hi完成签到,获得积分10
10秒前
舒心谷雪完成签到 ,获得积分10
11秒前
CFT完成签到,获得积分10
15秒前
大意的晓亦完成签到 ,获得积分10
19秒前
NexusExplorer应助innnnd采纳,获得10
20秒前
小小旭呀完成签到,获得积分10
20秒前
21秒前
starboy2nd应助小南采纳,获得10
22秒前
22秒前
25秒前
非理性或发布了新的文献求助10
26秒前
tulip发布了新的文献求助10
27秒前
28秒前
Solarenergy完成签到,获得积分0
30秒前
30秒前
CipherSage应助小南采纳,获得10
31秒前
香蕉觅云应助非理性或采纳,获得10
33秒前
yuxiaoye发布了新的文献求助10
33秒前
木耳发布了新的文献求助10
33秒前
34秒前
38秒前
39秒前
39秒前
39秒前
梅梅王发布了新的文献求助10
43秒前
enternow发布了新的文献求助10
44秒前
XLC发布了新的文献求助10
44秒前
长安宁发布了新的文献求助10
44秒前
章鱼完成签到,获得积分10
45秒前
Zhuoyi完成签到,获得积分10
47秒前
48秒前
tulip完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228136
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751