Artificial intelligence applications in the diagnosis of gallbladder neoplasms through ultrasound: A review

超声波 计算机科学 胆囊 放射科 人工智能 医学 内科学
作者
Sara Dadjouy,Hedieh Sajedi
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106149-106149 被引量:5
标识
DOI:10.1016/j.bspc.2024.106149
摘要

The occurrence of cancer in the gallbladder is infrequent. However, it is an aggressive disease that is often diagnosed at a late stage. Ultrasound imaging is a common first-line diagnostic tool for gallbladder diseases, but its accuracy relies on the expertise of the sonographer and the radiologist. The use of AI techniques, such as machine learning and deep learning, can enhance the diagnostic accuracy and efficiency from ultrasound imaging, serving as a supplementary diagnostic tool. This paper aims to address the existing gap in reviews on the application of AI in diagnosing gallbladder malignancies using ultrasound images. It provides insights into current trends in this field and suggests directions for future research. From the reviewed studies, it appears that despite the promising results, several challenges persist. These include the lack of large and comprehensive datasets, scarcity of publicly available datasets, and questions regarding the robustness, generality and reliability of AI models, which affect the models' practicality. In addition, the YOLOv8 model is evaluated as the object detector in the methodology pipeline of one of the reviewed papers. A fusion method that combines the bounding boxes of Faster R-CNN and YOLOv8, leveraging the benefits of both techniques, is also presented. By using the bounding boxes from the proposed fusion method, superior classification performance was obtained with an accuracy of 92.62%. This outperformed the individual use of Faster R-CNN and YOLOv8, which yielded accuracies of 90.16% and 82.79%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注慕晴完成签到,获得积分10
1秒前
任性的蝴蝶完成签到,获得积分10
1秒前
快递乱跑完成签到 ,获得积分10
1秒前
司空白安完成签到,获得积分10
1秒前
天天快乐应助沉默的明杰采纳,获得10
2秒前
酷波er应助科研小菜鸡采纳,获得10
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
一口辰完成签到,获得积分20
2秒前
PZZ发布了新的文献求助10
2秒前
科目三应助chenxi采纳,获得10
3秒前
EYRE完成签到,获得积分10
3秒前
科研通AI5应助小张采纳,获得10
3秒前
annoraz完成签到,获得积分20
3秒前
妩媚的强炫完成签到,获得积分10
3秒前
4秒前
汉堡包应助叉叉茶采纳,获得10
4秒前
搜集达人应助专注慕晴采纳,获得10
4秒前
无花果应助侃侃采纳,获得10
4秒前
光电效应完成签到,获得积分10
5秒前
薇薇完成签到,获得积分10
5秒前
科研通AI2S应助天天小女孩采纳,获得10
6秒前
英姑应助天天小女孩采纳,获得10
6秒前
yyq完成签到,获得积分20
6秒前
123456发布了新的文献求助10
6秒前
ironsilica完成签到,获得积分10
7秒前
嗯嗯你说完成签到,获得积分10
7秒前
dafa完成签到,获得积分10
8秒前
方断秋完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
8秒前
沉静青寒完成签到,获得积分10
8秒前
浮熙完成签到 ,获得积分10
9秒前
ddss发布了新的文献求助10
9秒前
10秒前
10秒前
慕青应助lxlcx采纳,获得10
10秒前
10秒前
10秒前
zxn发布了新的文献求助10
11秒前
星星月完成签到 ,获得积分10
11秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Electrolytes, Interfaces and Interphases 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376720
关于积分的说明 10494415
捐赠科研通 3096112
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820189
科研通“疑难数据库(出版商)”最低求助积分说明 771885