Computational design of binders targeting the VSDIV from NaV1.7 sodium channel

钠通道 导航1 导航1.5 计算生物学 化学 纳米技术 材料科学 生物 有机化学
作者
Diego López Mateos,Adam Michael Murray,Hai M. Nguyen,Preetham Venkatesh,Brian Koepnick,David Baker,Heike Wulff,Vladimir Yarov‐Yarovoy
出处
期刊:Biophysical Journal [Elsevier BV]
卷期号:123 (3): 108a-108a
标识
DOI:10.1016/j.bpj.2023.11.770
摘要

Chronic pain affects about 20% of the US population, but safe treatments are limited. There is an urgent need for effective and non-addictive therapies for chronic pan conditions. Voltage-gated sodium (NaV) channel, NaV1.7, is a key player in pain signaling pathway, making it a promising target for novel pain therapeutics. Achieving high subtype selectivity when targeting NaV channels is of primary importance to avoid impairing vital physiological functions mediated by off-target channels. Efforts to selectively target NaV1.7 have been hindered by the difficulties in targeting NaV1.7 over other NaV channel subtypes. Peptidic gating modifier toxins (GMTs), such as Protoxin-II (ProTx2), are promising scaffolds for novel peptide design targeting ion channels with high potency and subtype selectivity. ProTx2 binds to the second and fourth voltage-sensing domains (VSDII and VSDIV) from NaV1.7 with moderate subtype selectivity and can modulate channel activation and inactivation. In this project, we modeled ProTx2 bound to human NaV1.7 VSDIV in an activated state. We used RoseTTAFold Diffusion and Protein MPNN protein design methods to generate protein binders inspired by ProTx2 binding motif with increased predicted binding affinity for human NaV1.7 VSDIV in an activated state. Additionally, we applied these protein design methods to create de novo binders targeting human NaV1.7 VSDIV in an activated state. We anticipate that trapping the VSDIV in an activated conformation will stabilize an inactivated state of the channel, as activation of VSDIV is coupled with channel fast inactivation. Initial electrophysiological screening of our top in silico binders identified promising candidates that inhibited NaV1.7 in the micromolar range. These binders will undergo further testing and optimization against NaV1.7 to create novel molecular tools to study NaV channel activity and effective and safe therapies for chronic pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guoqiang发布了新的文献求助10
1秒前
primer发布了新的文献求助10
1秒前
越野完成签到 ,获得积分10
1秒前
2秒前
个性竺完成签到,获得积分10
5秒前
7秒前
雪sung发布了新的文献求助10
8秒前
jie完成签到,获得积分10
8秒前
爆米花应助wenfeisun采纳,获得10
10秒前
12356完成签到,获得积分10
11秒前
1233333发布了新的文献求助20
11秒前
沉梦志昂发布了新的文献求助10
12秒前
温暖的醉蓝完成签到,获得积分10
12秒前
柚子完成签到,获得积分20
13秒前
充电宝应助QDU采纳,获得10
13秒前
我是真人哈应助淡如菊采纳,获得10
14秒前
ChatGDP_deepsuck完成签到,获得积分10
15秒前
日常常完成签到,获得积分10
16秒前
科研通AI2S应助寒冷语兰采纳,获得10
17秒前
bkagyin应助99v587采纳,获得10
18秒前
调皮冬日给调皮冬日的求助进行了留言
19秒前
沉梦志昂完成签到,获得积分10
20秒前
JianYugen完成签到,获得积分0
22秒前
淡如菊完成签到,获得积分10
31秒前
orixero应助Guoqiang采纳,获得10
32秒前
Bin_Liu发布了新的文献求助10
34秒前
冰激凌完成签到,获得积分10
34秒前
勤恳完成签到,获得积分10
35秒前
小平发布了新的文献求助10
35秒前
SciGPT应助毅诚菌采纳,获得10
36秒前
隐形曼青应助忧郁山槐采纳,获得10
39秒前
小马甲应助111采纳,获得10
41秒前
42秒前
42秒前
44秒前
44秒前
微微发布了新的文献求助100
46秒前
Doin完成签到 ,获得积分10
48秒前
48秒前
daidai发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223326
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798917
科研通“疑难数据库(出版商)”最低求助积分说明 758634