清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MIF: Multi-Shot Interactive Fusion Model for Cancer Survival Prediction Using Pathological Image and Genomic Data

判别式 人工智能 计算机科学 机器学习 模式 融合 数据挖掘 社会学 哲学 语言学 社会科学
作者
Yi Shi,Minghui Wang,Honglei Liu,Fang Zhao,Ao Li,Xun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/jbhi.2024.3363161
摘要

Accurate cancer survival prediction is crucial for oncologists to determine therapeutic plan, which directly influences the treatment efficacy and survival outcome of patient. Recently, multimodal fusion-based prognostic methods have demonstrated effectiveness for survival prediction by fusing diverse cancer-related data from different medical modalities, e.g., pathological images and genomic data. However, these works still face significant challenges. First, most approaches attempt multimodal fusion by simple one-shot fusion strategy, which is insufficient to explore complex interactions underlying in highly disparate multimodal data. Second, current methods for investigating multimodal interactions face the capability-efficiency dilemma, which is the difficult balance between powerful modeling capability and applicable computational efficiency, thus impeding effective multimodal fusion. In this study, to encounter these challenges, we propose an innovative multi-shot interactive fusion method named MIF for precise survival prediction by utilizing pathological and genomic data. Particularly, a novel multi-shot fusion framework is introduced to promote multimodal fusion by decomposing it into successive fusing stages, thus delicately integrating modalities in a progressive way. Moreover, to address the capacity-efficiency dilemma, various affinity-based interactive modules are introduced to synergize the multi-shot framework. Specifically, by harnessing comprehensive affinity information as guidance for mining interactions, the proposed interactive modules can efficiently generate low-dimensional discriminative multimodal representations. Extensive experiments on different cancer datasets unravel that our method not only successfully achieves state-of-the-art performance by performing effective multimodal fusion, but also possesses high computational efficiency compared to existing survival prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
六一儿童节完成签到 ,获得积分10
3秒前
foyefeng完成签到 ,获得积分10
3秒前
001发布了新的文献求助10
5秒前
13秒前
zhentg发布了新的文献求助10
19秒前
稻子完成签到 ,获得积分10
33秒前
clock完成签到 ,获得积分10
58秒前
fishss完成签到 ,获得积分10
1分钟前
Kevin发布了新的文献求助10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
1分钟前
小锋完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
有终完成签到 ,获得积分10
1分钟前
annie完成签到,获得积分10
1分钟前
彩色嚣完成签到 ,获得积分10
2分钟前
uouuo完成签到 ,获得积分10
3分钟前
可爱的函函应助001采纳,获得10
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
001发布了新的文献求助10
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
方琼燕完成签到 ,获得积分10
3分钟前
午后狂睡完成签到 ,获得积分10
3分钟前
creep2020完成签到,获得积分10
3分钟前
3分钟前
斯文的傲珊完成签到,获得积分10
4分钟前
4分钟前
白菜完成签到 ,获得积分10
4分钟前
乐观海云完成签到 ,获得积分10
4分钟前
huanghe完成签到,获得积分10
4分钟前
joe完成签到 ,获得积分0
5分钟前
钉钉完成签到 ,获得积分10
5分钟前
annie发布了新的文献求助10
5分钟前
FIN关闭了FIN文献求助
5分钟前
我是125完成签到,获得积分10
5分钟前
无情夏寒完成签到 ,获得积分10
5分钟前
星辰大海应助001采纳,获得10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300928
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626