CT radiomics analysis discriminates pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary MALT lymphoma

马尔特淋巴瘤 无线电技术 医学 淋巴瘤 逻辑回归 支持向量机 人工智能 肺癌 病理 机器学习 放射科 内科学 计算机科学
作者
Yuyin Le,Hao‐Jie Zhu,Chenjing Ye,Jiexiang Lin,N.S. Wang,Ting Yang
出处
期刊:Methods [Elsevier BV]
卷期号:224: 54-62 被引量:5
标识
DOI:10.1016/j.ymeth.2024.02.003
摘要

The aim of this study is to create and validate a radiomics model based on CT scans, enabling the distinction between pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma and other pulmonary lesion causes. Patients diagnosed with primary pulmonary MALT lymphoma and lung infections at Fuzhou Pulmonary Hospital were randomly assigned to either a training group or a validation group. Meanwhile, individuals diagnosed with primary pulmonary MALT lymphoma and lung infections at Fujian Provincial Cancer Hospital were chosen as the external test group. We employed ITK-SNAP software for delineating the Region of Interest (ROI) within the images. Subsequently, we extracted radiomics features and convolutional neural networks using PyRadiomics, a component of the Onekey AI software suite. Relevant radiomic features were selected to build an intelligent diagnostic prediction model utilizing CT images, and the model's efficacy was assessed in both the validation group and the external test group. Leveraging radiomics, ten distinct features were carefully chosen for analysis. Subsequently, this study employed the machine learning techniques of Logistic Regression (LR), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to construct models using these ten selected radiomics features within the training groups. Among these, SVM exhibited the highest performance, achieving an accuracy of 0.868, 0.870, and 0.90 on the training, validation, and external testing groups, respectively. For LR, the accuracy was 0.837, 0.863, and 0.90 on the training, validation, and external testing groups, respectively. For KNN, the accuracy was 0.884, 0.859, and 0.790 on the training, validation, and external testing groups, respectively. We established a noninvasive radiomics model utilizing CT imaging to diagnose pulmonary MALT lymphoma associated with pulmonary lesions. This model presents a promising adjunct tool to enhance diagnostic specificity for pulmonary MALT lymphoma, particularly in populations where pulmonary lesion changes may be attributed to other causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辰伍发布了新的文献求助10
4秒前
Hello应助看起来不太强采纳,获得10
4秒前
一起去旅行完成签到,获得积分20
5秒前
海问天完成签到,获得积分10
7秒前
14秒前
Billy发布了新的文献求助10
15秒前
Akim应助姜黎采纳,获得10
16秒前
17秒前
海问天发布了新的文献求助10
17秒前
可爱寻芹完成签到 ,获得积分10
17秒前
Carol发布了新的文献求助20
18秒前
20秒前
21秒前
蒋瑞轩发布了新的文献求助10
23秒前
辰伍完成签到,获得积分10
24秒前
24秒前
hhh发布了新的文献求助10
25秒前
28秒前
irvinzp完成签到,获得积分10
30秒前
科研通AI5应助angel采纳,获得10
31秒前
852应助www采纳,获得10
32秒前
32秒前
小鱼鱼Fish发布了新的文献求助20
33秒前
依依完成签到,获得积分10
34秒前
34秒前
34秒前
LJN.up完成签到,获得积分10
36秒前
zhouyan发布了新的文献求助10
36秒前
37秒前
cdhuang发布了新的文献求助10
37秒前
目土土发布了新的文献求助10
37秒前
隐形曼青应助wyb采纳,获得10
38秒前
LJN.up发布了新的文献求助10
39秒前
梨涡远点发布了新的文献求助10
39秒前
Amy完成签到,获得积分10
41秒前
笨笨千亦发布了新的文献求助10
44秒前
Billy发布了新的文献求助10
44秒前
Jessica完成签到,获得积分10
45秒前
爆米花应助蒋瑞轩采纳,获得10
45秒前
46秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814385
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395440
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428