亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT radiomics analysis discriminates pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary MALT lymphoma

马尔特淋巴瘤 无线电技术 医学 淋巴瘤 逻辑回归 支持向量机 人工智能 肺癌 病理 机器学习 放射科 内科学 计算机科学
作者
Yuyin Le,Hao‐Jie Zhu,Chenjing Ye,Jiexiang Lin,N.S. Wang,Ting Yang
出处
期刊:Methods [Elsevier BV]
卷期号:224: 54-62 被引量:8
标识
DOI:10.1016/j.ymeth.2024.02.003
摘要

The aim of this study is to create and validate a radiomics model based on CT scans, enabling the distinction between pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma and other pulmonary lesion causes. Patients diagnosed with primary pulmonary MALT lymphoma and lung infections at Fuzhou Pulmonary Hospital were randomly assigned to either a training group or a validation group. Meanwhile, individuals diagnosed with primary pulmonary MALT lymphoma and lung infections at Fujian Provincial Cancer Hospital were chosen as the external test group. We employed ITK-SNAP software for delineating the Region of Interest (ROI) within the images. Subsequently, we extracted radiomics features and convolutional neural networks using PyRadiomics, a component of the Onekey AI software suite. Relevant radiomic features were selected to build an intelligent diagnostic prediction model utilizing CT images, and the model's efficacy was assessed in both the validation group and the external test group. Leveraging radiomics, ten distinct features were carefully chosen for analysis. Subsequently, this study employed the machine learning techniques of Logistic Regression (LR), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to construct models using these ten selected radiomics features within the training groups. Among these, SVM exhibited the highest performance, achieving an accuracy of 0.868, 0.870, and 0.90 on the training, validation, and external testing groups, respectively. For LR, the accuracy was 0.837, 0.863, and 0.90 on the training, validation, and external testing groups, respectively. For KNN, the accuracy was 0.884, 0.859, and 0.790 on the training, validation, and external testing groups, respectively. We established a noninvasive radiomics model utilizing CT imaging to diagnose pulmonary MALT lymphoma associated with pulmonary lesions. This model presents a promising adjunct tool to enhance diagnostic specificity for pulmonary MALT lymphoma, particularly in populations where pulmonary lesion changes may be attributed to other causes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣灯泡完成签到,获得积分10
21秒前
39秒前
57秒前
阿绵发布了新的文献求助10
1分钟前
卓初露完成签到 ,获得积分10
1分钟前
1分钟前
刘机智发布了新的文献求助10
1分钟前
Orange应助lei采纳,获得10
1分钟前
bkagyin应助zhj采纳,获得10
1分钟前
2分钟前
JoeyJin完成签到,获得积分10
2分钟前
科研通AI2S应助gszy1975采纳,获得10
2分钟前
刘莲关注了科研通微信公众号
3分钟前
3分钟前
冷静新烟发布了新的文献求助10
3分钟前
刘莲发布了新的文献求助10
3分钟前
3分钟前
Yu发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
隐形曼青应助Yu采纳,获得10
4分钟前
思源应助冷静新烟采纳,获得10
4分钟前
彭于晏应助xun采纳,获得100
5分钟前
chengxue完成签到,获得积分10
5分钟前
li完成签到,获得积分10
5分钟前
田様应助英勇的人生采纳,获得10
6分钟前
6分钟前
YQQ发布了新的文献求助10
6分钟前
gszy1975完成签到,获得积分10
6分钟前
朱琦完成签到 ,获得积分10
6分钟前
YQQ完成签到,获得积分20
6分钟前
6分钟前
沉香续断发布了新的文献求助10
6分钟前
lbl完成签到,获得积分10
6分钟前
沉香续断完成签到,获得积分10
6分钟前
7分钟前
7分钟前
bacteria发布了新的文献求助10
7分钟前
bacteria完成签到,获得积分10
7分钟前
活力青筠发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695057
求助须知:如何正确求助?哪些是违规求助? 4065290
关于积分的说明 12568767
捐赠科研通 3764235
什么是DOI,文献DOI怎么找? 2078901
邀请新用户注册赠送积分活动 1107219
科研通“疑难数据库(出版商)”最低求助积分说明 985445