Semantic Segmentation of Remote Sensing Images by Interactive Representation Refinement and Geometric Prior-Guided Inference

计算机科学 人工智能 先验概率 几何变换 判别式 分割 编码器 模式识别(心理学) 推论 特征学习 特征(语言学) 计算机视觉 图像(数学) 贝叶斯概率 哲学 操作系统 语言学
作者
Xin Li,Feng Xu,Fan Liu,Yao Tong,Xin Lyu,Jun Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:41
标识
DOI:10.1109/tgrs.2023.3339291
摘要

High spatial resolution remote sensing images (HRRSIs) contain intricate details and varied spectral distributions, making their semantic segmentation a challenging task. To address this problem, it is crucial to adequately capture both local and global contexts to reduce semantic ambiguity. While self-attention modules in vision transformers capture long-range context, they tend to sacrifice local details. In this article, we propose a geometric prior-guided interactive network (GPINet), a hybrid network that refines features across encoder and decoder stages. First of all, a dual branch structure encoder with local-global interaction modules (LGIMs) is designed to fully exploit local and global contexts for feature refinement. Unlike commonly used skip connections or concatenations, the LGIMs bilaterally couple and exchange CNN features with transformer features by lossless transformation and elaborating cross-attention. Moreover, we introduce a geometric prior generation module (GPGM) that iteratively updates the randomly initialized geometric prior. Subsequently, the geometric priors are stored and used to guide feature recovery. Finally, a weighted summation is applied to the upsampled decoded features and geometric priors. By comprehensively capturing contexts and enabling lossless decoding and deterministic inference, GPINet allows the network to learn discriminative representations for accurately specifying pixel-level semantics. Experiments on three benchmark datasets demonstrate the superiority of the proposed GPINet over state-of-the-art methods. Furthermore, we validate the effectiveness of geometric priors and compare the model sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小咖张完成签到,获得积分10
刚刚
权青曼完成签到,获得积分10
1秒前
xy发布了新的文献求助10
2秒前
乐乐应助勤劳的晓镍采纳,获得10
2秒前
调皮的涵易完成签到,获得积分10
2秒前
Maestro_S应助lichaofan采纳,获得10
3秒前
3秒前
LS发布了新的文献求助10
4秒前
nannan发布了新的文献求助10
4秒前
chunfengfusu应助道听途说采纳,获得10
4秒前
寂寞的惜灵完成签到,获得积分20
5秒前
ATTENTION完成签到,获得积分10
5秒前
5秒前
李爱国应助一郭红烧肉采纳,获得10
5秒前
6秒前
吉良吉影发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
结实芝麻完成签到 ,获得积分10
10秒前
huxi发布了新的文献求助10
11秒前
佳佳发布了新的文献求助10
12秒前
FashionBoy应助道听途说采纳,获得10
12秒前
asdasd完成签到,获得积分20
13秒前
tianzhen完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
zuihaodewomen发布了新的文献求助10
15秒前
SciGPT应助成就灭龙采纳,获得10
16秒前
英俊的铭应助nannan采纳,获得10
16秒前
英俊的铭应助tianzhen采纳,获得10
17秒前
研友_p完成签到,获得积分10
17秒前
17秒前
hui_L发布了新的文献求助10
18秒前
18秒前
asdasd发布了新的文献求助30
19秒前
20秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676