Improving Accuracy of Pseudo-LiDAR for 3D Object Detection by Accurate Depth Estimation

激光雷达 点云 计算机科学 计算机视觉 目标检测 人工智能 对象(语法) 深度图 特征(语言学) 特征提取 遥感 分割 图像(数学) 地质学 哲学 语言学
作者
Tao Peng,Byeong-Woo Kim
标识
DOI:10.1109/ickii58656.2023.10332716
摘要

With the advancement of autonomous driving technology, traditional 2D object detection approaches no longer fulfill the Safety of The Intended Functionality (SOTIF) standards. LiDAR sensors are efficient in giving precise point cloud information for accurate and reliable 3D object detection. Alternative sensors also are researched by researchers if they have lower costs but are limited in environmental circumstances. Notably, pseudo-LiDAR-based monocular 3D object detection has emerged as a viable option, as it generates a depth map from an RGB picture before translating it into a point cloud for 3D object detection. However, because the majority of depth estimation algorithms do not account for the loss of boundary information during feature extraction processing, depth artifacts occur in the periphery of objects in the depth map. These artifacts introduce long-tail problems in pseudo-LiDAR data, undermining the accuracy of 3D object detection. Therefore, we suggested a depth estimation method using Laplacian pyramid-based depth residuals to correctly capture object depth bounds. This improved the estimate and revised the depth map, which was converted into pseudo-LiDAR point cloud data. The pseudo-LiDAR was then used to recognize 3D objects. The proposed method, in particular, significantly mitigated the common border Long-tail problems in pseudo-LiDAR data, hence improving the precision of 3D object detection. Experiment validations demonstrated the method's efficiency and enhanced performance to improve the reliability of autonomous driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助科研小白采纳,获得10
1秒前
吉吉完成签到,获得积分10
2秒前
李爱国应助快乐友灵采纳,获得10
2秒前
2秒前
2秒前
3秒前
77发布了新的文献求助10
3秒前
4秒前
5秒前
上官若男应助Choi采纳,获得10
5秒前
6秒前
MRzhu完成签到,获得积分10
6秒前
nieyaochi发布了新的文献求助10
7秒前
熊二迷妹发布了新的文献求助10
7秒前
7秒前
SanXing三醒发布了新的文献求助10
7秒前
8秒前
万能图书馆应助风清扬采纳,获得10
8秒前
万能图书馆应助starry采纳,获得10
8秒前
深情安青应助shiyi采纳,获得10
9秒前
小涛涛发布了新的文献求助30
10秒前
10秒前
星辰大海应助GZ采纳,获得10
11秒前
机智元霜关注了科研通微信公众号
12秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
tcjia应助白路采纳,获得10
16秒前
Re完成签到 ,获得积分10
19秒前
Ava应助坨坨采纳,获得10
21秒前
21秒前
22秒前
852应助储物间采纳,获得10
22秒前
23秒前
ding应助惜海采纳,获得10
23秒前
24秒前
24秒前
agvebvg发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480392
求助须知:如何正确求助?哪些是违规求助? 4581543
关于积分的说明 14381096
捐赠科研通 4510088
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458070
关于科研通互助平台的介绍 1431812