Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review

医学 卷积神经网络 人工智能 射线照相术 前瞻性队列研究 预测值 放射科 机器学习 核医学 医学物理学 外科 内科学 计算机科学
作者
Domenico Albano,V. Galiano,Mariachiara Basile,Filippo Di Luca,Salvatore Gitto,Carmelo Messina,Maria Grazia Cagetti,Massimo Del Fabbro,Gianluca Martino Tartaglia,Luca Maria Sconfienza
出处
期刊:BMC Oral Health [BioMed Central]
卷期号:24 (1) 被引量:25
标识
DOI:10.1186/s12903-024-04046-7
摘要

Abstract Background The aim of this systematic review is to evaluate the diagnostic performance of Artificial Intelligence (AI) models designed for the detection of caries lesion (CL). Materials and methods An electronic literature search was conducted on PubMed, Web of Science, SCOPUS, LILACS and Embase databases for retrospective, prospective and cross-sectional studies published until January 2023, using the following keywords: artificial intelligence (AI), machine learning (ML), deep learning (DL), artificial neural networks (ANN), convolutional neural networks (CNN), deep convolutional neural networks (DCNN), radiology, detection, diagnosis and dental caries (DC). The quality assessment was performed using the guidelines of QUADAS-2. Results Twenty articles that met the selection criteria were evaluated. Five studies were performed on periapical radiographs, nine on bitewings, and six on orthopantomography. The number of imaging examinations included ranged from 15 to 2900. Four studies investigated ANN models, fifteen CNN models, and two DCNN models. Twelve were retrospective studies, six cross-sectional and two prospective. The following diagnostic performance was achieved in detecting CL: sensitivity from 0.44 to 0.86, specificity from 0.85 to 0.98, precision from 0.50 to 0.94, PPV (Positive Predictive Value) 0.86, NPV (Negative Predictive Value) 0.95, accuracy from 0.73 to 0.98, area under the curve (AUC) from 0.84 to 0.98, intersection over union of 0.3–0.4 and 0.78, Dice coefficient 0.66 and 0.88, F1-score from 0.64 to 0.92. According to the QUADAS-2 evaluation, most studies exhibited a low risk of bias. Conclusion AI-based models have demonstrated good diagnostic performance, potentially being an important aid in CL detection. Some limitations of these studies are related to the size and heterogeneity of the datasets. Future studies need to rely on comparable, large, and clinically meaningful datasets. Protocol PROSPERO identifier: CRD42023470708

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待白安发布了新的文献求助10
1秒前
mouxq发布了新的文献求助100
1秒前
小离心机完成签到,获得积分10
2秒前
花样年华发布了新的文献求助10
2秒前
xx完成签到 ,获得积分10
2秒前
cuigao发布了新的文献求助10
3秒前
逯闯发布了新的文献求助10
3秒前
爬得飞快的仲文博完成签到,获得积分10
3秒前
3秒前
Jasper应助LIKUN采纳,获得10
3秒前
4秒前
4秒前
林森发布了新的文献求助10
4秒前
今夕是何年完成签到,获得积分10
5秒前
机灵的囧完成签到,获得积分10
5秒前
5秒前
潇湘雪月完成签到,获得积分10
5秒前
无私夜雪发布了新的文献求助10
6秒前
彪壮的小白菜关注了科研通微信公众号
6秒前
7秒前
彭于彦祖应助天气不错采纳,获得30
7秒前
Hello应助leo采纳,获得10
7秒前
友好皮皮虾完成签到,获得积分10
7秒前
NexusExplorer应助等待白安采纳,获得10
8秒前
烟花应助丁一采纳,获得10
8秒前
李爱国应助lwzx采纳,获得20
8秒前
科目三应助lwzx采纳,获得10
8秒前
赘婿应助lwzx采纳,获得10
8秒前
大力大象发布了新的文献求助10
8秒前
希望天下0贩的0应助lwzx采纳,获得10
8秒前
万能图书馆应助lwzx采纳,获得10
8秒前
赘婿应助lwzx采纳,获得30
8秒前
华仔应助lwzx采纳,获得10
8秒前
李爱国应助lwzx采纳,获得10
8秒前
隐形曼青应助lwzx采纳,获得20
8秒前
彭于晏应助学术牛马采纳,获得10
9秒前
9秒前
官官发布了新的文献求助10
9秒前
悦悦大王完成签到,获得积分20
10秒前
酷波er应助贤惠的豌豆采纳,获得10
10秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049364
求助须知:如何正确求助?哪些是违规求助? 3587318
关于积分的说明 11399067
捐赠科研通 3313808
什么是DOI,文献DOI怎么找? 1822987
邀请新用户注册赠送积分活动 894919
科研通“疑难数据库(出版商)”最低求助积分说明 816617