A photoplethysmography-based diagnostic support system for obstructive sleep apnea using deep learning approaches

光容积图 阻塞性睡眠呼吸暂停 睡眠(系统调用) 计算机科学 医学 睡眠呼吸暂停 人工智能 呼吸暂停 重症监护医学 心脏病学 内科学 计算机视觉 滤波器(信号处理) 操作系统
作者
E. Smily Jeya Jothi,J. Anitha,D. Jude Hemanth
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:102: 108279-108279 被引量:10
标识
DOI:10.1016/j.compeleceng.2022.108279
摘要

• Sleep disorders such as OSA are common. • Deep Learning techniques are used to detect OSA automatically. • Networks are trained using PPG signals from 1375 subjects. • Three different deep learning techniques are used, of which TCN-LSTM exhibits promising results. • Real-time OSA event analysis is possible with this model. Obstructive Sleep Apnea (OSA) is a common sleep disorder characterized by periods of reduced or complete cessation of airflow during sleep due to obstruction of the upper respiratory pathway. A novel deep learning framework is developed for automated feature extraction and detection of OSA events from Photoplethysmogram (PPG) signals recorded at the finger tip of the subjects using a Photoplethysmography sensor. This helps in real-time automatic OSA screening at a faster rate and reduces the need for an exhausting and time-consuming Polysomnography (PSG) sleep study. Bi-directional Long Short-Term Memory (Bi-LSTM), Temporal Convolutional Network (TCN), and TCN-LSTM are the three deep learning approaches implemented to facilitate the automatic screening of OSA events, and their performance is compared. Training and testing are carried out using datasets collected from Physionet's apnea database and real time PPG signals of 315 subjects from diverse age groups with health conditions viz., hypertension, cardiovascular disease, and OSA. The performance of TCN-LSTM is better compared to the performance of TCN and Bi-LSTM. The proposed system exhibits an accuracy of 93.39%, a specificity of 94.37%, a sensitivity of 98.98% and F1 Score of 94.12%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张文卓完成签到 ,获得积分10
1秒前
xiaobai完成签到,获得积分10
1秒前
1秒前
CodeCraft应助reading gene采纳,获得10
1秒前
Mason完成签到,获得积分10
1秒前
QIQI完成签到,获得积分10
1秒前
2秒前
朗读卿发布了新的文献求助10
2秒前
李三三完成签到,获得积分10
2秒前
辞清完成签到 ,获得积分10
2秒前
执着银耳汤完成签到,获得积分10
3秒前
积极醉柳完成签到,获得积分10
3秒前
内向沛槐完成签到,获得积分20
3秒前
4秒前
ZDX发布了新的文献求助10
4秒前
汉堡包应助阿猫采纳,获得10
4秒前
迷人金针菇完成签到,获得积分20
4秒前
锐克5完成签到,获得积分20
5秒前
min20210429完成签到,获得积分10
5秒前
无宇伦比完成签到,获得积分10
5秒前
Kay完成签到,获得积分10
5秒前
朗读卿完成签到 ,获得积分10
5秒前
随遇而安应助CrysField采纳,获得40
5秒前
要减肥的chao完成签到,获得积分10
5秒前
SYLH应助zzz采纳,获得10
6秒前
加油吧少年完成签到,获得积分10
6秒前
情怀应助认真咖啡豆采纳,获得10
7秒前
7秒前
7秒前
南湖秋水发布了新的文献求助10
8秒前
8秒前
小陈完成签到,获得积分10
8秒前
Liu完成签到,获得积分10
8秒前
David完成签到,获得积分10
9秒前
脑洞疼应助imss1采纳,获得10
10秒前
ma完成签到,获得积分10
10秒前
jjj完成签到,获得积分10
10秒前
Amanda完成签到,获得积分10
11秒前
wang完成签到,获得积分10
11秒前
bigpluto完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972999
求助须知:如何正确求助?哪些是违规求助? 3517320
关于积分的说明 11187840
捐赠科研通 3252967
什么是DOI,文献DOI怎么找? 1796715
邀请新用户注册赠送积分活动 876504
科研通“疑难数据库(出版商)”最低求助积分说明 805747